Branch data Line data Source code
1 : : /*
2 : : * Dynamic DMA mapping support.
3 : : *
4 : : * This implementation is a fallback for platforms that do not support
5 : : * I/O TLBs (aka DMA address translation hardware).
6 : : * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 : : * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 : : * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 : : * David Mosberger-Tang <davidm@hpl.hp.com>
10 : : *
11 : : * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 : : * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 : : * unnecessary i-cache flushing.
14 : : * 04/07/.. ak Better overflow handling. Assorted fixes.
15 : : * 05/09/10 linville Add support for syncing ranges, support syncing for
16 : : * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 : : * 08/12/11 beckyb Add highmem support
18 : : */
19 : :
20 : : #include <linux/cache.h>
21 : : #include <linux/dma-mapping.h>
22 : : #include <linux/mm.h>
23 : : #include <linux/export.h>
24 : : #include <linux/spinlock.h>
25 : : #include <linux/string.h>
26 : : #include <linux/swiotlb.h>
27 : : #include <linux/pfn.h>
28 : : #include <linux/types.h>
29 : : #include <linux/ctype.h>
30 : : #include <linux/highmem.h>
31 : : #include <linux/gfp.h>
32 : :
33 : : #include <asm/io.h>
34 : : #include <asm/dma.h>
35 : : #include <asm/scatterlist.h>
36 : :
37 : : #include <linux/init.h>
38 : : #include <linux/bootmem.h>
39 : : #include <linux/iommu-helper.h>
40 : :
41 : : #define CREATE_TRACE_POINTS
42 : : #include <trace/events/swiotlb.h>
43 : :
44 : : #define OFFSET(val,align) ((unsigned long) \
45 : : ( (val) & ( (align) - 1)))
46 : :
47 : : #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
48 : :
49 : : /*
50 : : * Minimum IO TLB size to bother booting with. Systems with mainly
51 : : * 64bit capable cards will only lightly use the swiotlb. If we can't
52 : : * allocate a contiguous 1MB, we're probably in trouble anyway.
53 : : */
54 : : #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
55 : :
56 : : int swiotlb_force;
57 : :
58 : : /*
59 : : * Used to do a quick range check in swiotlb_tbl_unmap_single and
60 : : * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
61 : : * API.
62 : : */
63 : : static phys_addr_t io_tlb_start, io_tlb_end;
64 : :
65 : : /*
66 : : * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
67 : : * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
68 : : */
69 : : static unsigned long io_tlb_nslabs;
70 : :
71 : : /*
72 : : * When the IOMMU overflows we return a fallback buffer. This sets the size.
73 : : */
74 : : static unsigned long io_tlb_overflow = 32*1024;
75 : :
76 : : static phys_addr_t io_tlb_overflow_buffer;
77 : :
78 : : /*
79 : : * This is a free list describing the number of free entries available from
80 : : * each index
81 : : */
82 : : static unsigned int *io_tlb_list;
83 : : static unsigned int io_tlb_index;
84 : :
85 : : /*
86 : : * We need to save away the original address corresponding to a mapped entry
87 : : * for the sync operations.
88 : : */
89 : : static phys_addr_t *io_tlb_orig_addr;
90 : :
91 : : /*
92 : : * Protect the above data structures in the map and unmap calls
93 : : */
94 : : static DEFINE_SPINLOCK(io_tlb_lock);
95 : :
96 : : static int late_alloc;
97 : :
98 : : static int __init
99 : 0 : setup_io_tlb_npages(char *str)
100 : : {
101 [ # # ]: 0 : if (isdigit(*str)) {
102 : 0 : io_tlb_nslabs = simple_strtoul(str, &str, 0);
103 : : /* avoid tail segment of size < IO_TLB_SEGSIZE */
104 : 0 : io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
105 : : }
106 [ # # ]: 0 : if (*str == ',')
107 : 0 : ++str;
108 [ # # ]: 0 : if (!strcmp(str, "force"))
109 : 0 : swiotlb_force = 1;
110 : :
111 : 0 : return 0;
112 : : }
113 : : early_param("swiotlb", setup_io_tlb_npages);
114 : : /* make io_tlb_overflow tunable too? */
115 : :
116 : 0 : unsigned long swiotlb_nr_tbl(void)
117 : : {
118 : 0 : return io_tlb_nslabs;
119 : : }
120 : : EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
121 : :
122 : : /* default to 64MB */
123 : : #define IO_TLB_DEFAULT_SIZE (64UL<<20)
124 : 0 : unsigned long swiotlb_size_or_default(void)
125 : : {
126 : : unsigned long size;
127 : :
128 : 0 : size = io_tlb_nslabs << IO_TLB_SHIFT;
129 : :
130 [ # # ]: 0 : return size ? size : (IO_TLB_DEFAULT_SIZE);
131 : : }
132 : :
133 : : /* Note that this doesn't work with highmem page */
134 : : static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
135 : : volatile void *address)
136 : : {
137 : : return phys_to_dma(hwdev, virt_to_phys(address));
138 : : }
139 : :
140 : : static bool no_iotlb_memory;
141 : :
142 : 0 : void swiotlb_print_info(void)
143 : : {
144 : 0 : unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
145 : : unsigned char *vstart, *vend;
146 : :
147 [ # # ]: 0 : if (no_iotlb_memory) {
148 : 0 : pr_warn("software IO TLB: No low mem\n");
149 : 0 : return;
150 : : }
151 : :
152 : 0 : vstart = phys_to_virt(io_tlb_start);
153 : 0 : vend = phys_to_virt(io_tlb_end);
154 : :
155 : 0 : printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
156 : : (unsigned long long)io_tlb_start,
157 : : (unsigned long long)io_tlb_end,
158 : : bytes >> 20, vstart, vend - 1);
159 : : }
160 : :
161 : 0 : int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
162 : : {
163 : : void *v_overflow_buffer;
164 : : unsigned long i, bytes;
165 : :
166 : 0 : bytes = nslabs << IO_TLB_SHIFT;
167 : :
168 : 0 : io_tlb_nslabs = nslabs;
169 : 0 : io_tlb_start = __pa(tlb);
170 : 0 : io_tlb_end = io_tlb_start + bytes;
171 : :
172 : : /*
173 : : * Get the overflow emergency buffer
174 : : */
175 : 0 : v_overflow_buffer = memblock_virt_alloc_low_nopanic(
176 : 0 : PAGE_ALIGN(io_tlb_overflow),
177 : : PAGE_SIZE);
178 [ # # ]: 0 : if (!v_overflow_buffer)
179 : : return -ENOMEM;
180 : :
181 : 0 : io_tlb_overflow_buffer = __pa(v_overflow_buffer);
182 : :
183 : : /*
184 : : * Allocate and initialize the free list array. This array is used
185 : : * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
186 : : * between io_tlb_start and io_tlb_end.
187 : : */
188 : 0 : io_tlb_list = memblock_virt_alloc(
189 : 0 : PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
190 : : PAGE_SIZE);
191 [ # # ]: 0 : for (i = 0; i < io_tlb_nslabs; i++)
192 : 0 : io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
193 : 0 : io_tlb_index = 0;
194 : 0 : io_tlb_orig_addr = memblock_virt_alloc(
195 : 0 : PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
196 : : PAGE_SIZE);
197 : :
198 [ # # ]: 0 : if (verbose)
199 : 0 : swiotlb_print_info();
200 : :
201 : : return 0;
202 : : }
203 : :
204 : : /*
205 : : * Statically reserve bounce buffer space and initialize bounce buffer data
206 : : * structures for the software IO TLB used to implement the DMA API.
207 : : */
208 : : void __init
209 : 0 : swiotlb_init(int verbose)
210 : : {
211 : : size_t default_size = IO_TLB_DEFAULT_SIZE;
212 : : unsigned char *vstart;
213 : : unsigned long bytes;
214 : :
215 [ # # ]: 0 : if (!io_tlb_nslabs) {
216 : 0 : io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
217 : : io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
218 : : }
219 : :
220 : 0 : bytes = io_tlb_nslabs << IO_TLB_SHIFT;
221 : :
222 : : /* Get IO TLB memory from the low pages */
223 : 0 : vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
224 [ # # ][ # # ]: 0 : if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
225 : 0 : return;
226 : :
227 [ # # ]: 0 : if (io_tlb_start)
228 : 0 : memblock_free_early(io_tlb_start,
229 : 0 : PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
230 : 0 : pr_warn("Cannot allocate SWIOTLB buffer");
231 : 0 : no_iotlb_memory = true;
232 : : }
233 : :
234 : : /*
235 : : * Systems with larger DMA zones (those that don't support ISA) can
236 : : * initialize the swiotlb later using the slab allocator if needed.
237 : : * This should be just like above, but with some error catching.
238 : : */
239 : : int
240 : 0 : swiotlb_late_init_with_default_size(size_t default_size)
241 : : {
242 : 0 : unsigned long bytes, req_nslabs = io_tlb_nslabs;
243 : : unsigned char *vstart = NULL;
244 : : unsigned int order;
245 : : int rc = 0;
246 : :
247 [ # # ]: 0 : if (!io_tlb_nslabs) {
248 : 0 : io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
249 : 0 : io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
250 : : }
251 : :
252 : : /*
253 : : * Get IO TLB memory from the low pages
254 : : */
255 [ # # ][ # # ]: 0 : order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
256 : 0 : io_tlb_nslabs = SLABS_PER_PAGE << order;
257 : 0 : bytes = io_tlb_nslabs << IO_TLB_SHIFT;
258 : :
259 [ # # ]: 0 : while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
260 : 0 : vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
261 : : order);
262 [ # # ]: 0 : if (vstart)
263 : : break;
264 : 0 : order--;
265 : : }
266 : :
267 [ # # ]: 0 : if (!vstart) {
268 : 0 : io_tlb_nslabs = req_nslabs;
269 : 0 : return -ENOMEM;
270 : : }
271 [ # # ][ # # ]: 0 : if (order != get_order(bytes)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
272 : 0 : printk(KERN_WARNING "Warning: only able to allocate %ld MB "
273 : 0 : "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
274 : 0 : io_tlb_nslabs = SLABS_PER_PAGE << order;
275 : : }
276 : 0 : rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
277 [ # # ]: 0 : if (rc)
278 : 0 : free_pages((unsigned long)vstart, order);
279 : 0 : return rc;
280 : : }
281 : :
282 : : int
283 : 0 : swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
284 : : {
285 : : unsigned long i, bytes;
286 : : unsigned char *v_overflow_buffer;
287 : :
288 : 0 : bytes = nslabs << IO_TLB_SHIFT;
289 : :
290 : 0 : io_tlb_nslabs = nslabs;
291 : 0 : io_tlb_start = virt_to_phys(tlb);
292 : 0 : io_tlb_end = io_tlb_start + bytes;
293 : :
294 [ # # ]: 0 : memset(tlb, 0, bytes);
295 : :
296 : : /*
297 : : * Get the overflow emergency buffer
298 : : */
299 [ # # ][ # # ]: 0 : v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
300 : 0 : get_order(io_tlb_overflow));
301 [ # # ]: 0 : if (!v_overflow_buffer)
302 : : goto cleanup2;
303 : :
304 : 0 : io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
305 : :
306 : : /*
307 : : * Allocate and initialize the free list array. This array is used
308 : : * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
309 : : * between io_tlb_start and io_tlb_end.
310 : : */
311 [ # # ][ # # ]: 0 : io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
312 : 0 : get_order(io_tlb_nslabs * sizeof(int)));
313 [ # # ]: 0 : if (!io_tlb_list)
314 : : goto cleanup3;
315 : :
316 [ # # ]: 0 : for (i = 0; i < io_tlb_nslabs; i++)
317 : 0 : io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
318 : 0 : io_tlb_index = 0;
319 : :
320 : 0 : io_tlb_orig_addr = (phys_addr_t *)
321 [ # # ][ # # ]: 0 : __get_free_pages(GFP_KERNEL,
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
322 : 0 : get_order(io_tlb_nslabs *
323 : : sizeof(phys_addr_t)));
324 [ # # ]: 0 : if (!io_tlb_orig_addr)
325 : : goto cleanup4;
326 : :
327 [ # # ]: 0 : memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
328 : :
329 : 0 : swiotlb_print_info();
330 : :
331 : 0 : late_alloc = 1;
332 : :
333 : 0 : return 0;
334 : :
335 : : cleanup4:
336 [ # # ][ # # ]: 0 : free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
337 : : sizeof(int)));
338 : 0 : io_tlb_list = NULL;
339 : : cleanup3:
340 [ # # ][ # # ]: 0 : free_pages((unsigned long)v_overflow_buffer,
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
341 : 0 : get_order(io_tlb_overflow));
342 : 0 : io_tlb_overflow_buffer = 0;
343 : : cleanup2:
344 : 0 : io_tlb_end = 0;
345 : 0 : io_tlb_start = 0;
346 : 0 : io_tlb_nslabs = 0;
347 : 0 : return -ENOMEM;
348 : : }
349 : :
350 : 0 : void __init swiotlb_free(void)
351 : : {
352 [ # # ]: 0 : if (!io_tlb_orig_addr)
353 : 0 : return;
354 : :
355 [ # # ]: 0 : if (late_alloc) {
356 [ # # ][ # # ]: 0 : free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
357 : 0 : get_order(io_tlb_overflow));
358 [ # # ][ # # ]: 0 : free_pages((unsigned long)io_tlb_orig_addr,
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
359 : 0 : get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
360 [ # # ][ # # ]: 0 : free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
361 : : sizeof(int)));
362 [ # # ][ # # ]: 0 : free_pages((unsigned long)phys_to_virt(io_tlb_start),
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
363 : 0 : get_order(io_tlb_nslabs << IO_TLB_SHIFT));
364 : : } else {
365 : 0 : memblock_free_late(io_tlb_overflow_buffer,
366 : 0 : PAGE_ALIGN(io_tlb_overflow));
367 : 0 : memblock_free_late(__pa(io_tlb_orig_addr),
368 : 0 : PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
369 : 0 : memblock_free_late(__pa(io_tlb_list),
370 : 0 : PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
371 : 0 : memblock_free_late(io_tlb_start,
372 : 0 : PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
373 : : }
374 : 0 : io_tlb_nslabs = 0;
375 : : }
376 : :
377 : : static int is_swiotlb_buffer(phys_addr_t paddr)
378 : : {
379 [ # # ][ # # ]: 0 : return paddr >= io_tlb_start && paddr < io_tlb_end;
[ # # ][ # # ]
[ # # ][ # # ]
380 : : }
381 : :
382 : : /*
383 : : * Bounce: copy the swiotlb buffer back to the original dma location
384 : : */
385 : 0 : static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
386 : : size_t size, enum dma_data_direction dir)
387 : : {
388 : 0 : unsigned long pfn = PFN_DOWN(orig_addr);
389 : : unsigned char *vaddr = phys_to_virt(tlb_addr);
390 : :
391 [ # # ]: 0 : if (PageHighMem(pfn_to_page(pfn))) {
392 : : /* The buffer does not have a mapping. Map it in and copy */
393 : 0 : unsigned int offset = orig_addr & ~PAGE_MASK;
394 : : char *buffer;
395 : : unsigned int sz = 0;
396 : : unsigned long flags;
397 : :
398 [ # # ]: 0 : while (size) {
399 : 0 : sz = min_t(size_t, PAGE_SIZE - offset, size);
400 : :
401 : : local_irq_save(flags);
402 : 0 : buffer = kmap_atomic(pfn_to_page(pfn));
403 [ # # ]: 0 : if (dir == DMA_TO_DEVICE)
404 : 0 : memcpy(vaddr, buffer + offset, sz);
405 : : else
406 : 0 : memcpy(buffer + offset, vaddr, sz);
407 : 0 : kunmap_atomic(buffer);
408 [ # # ]: 0 : local_irq_restore(flags);
409 : :
410 : 0 : size -= sz;
411 : 0 : pfn++;
412 : 0 : vaddr += sz;
413 : : offset = 0;
414 : : }
415 [ # # ]: 0 : } else if (dir == DMA_TO_DEVICE) {
416 : 0 : memcpy(vaddr, phys_to_virt(orig_addr), size);
417 : : } else {
418 : 0 : memcpy(phys_to_virt(orig_addr), vaddr, size);
419 : : }
420 : 0 : }
421 : :
422 : 0 : phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
423 : : dma_addr_t tbl_dma_addr,
424 : : phys_addr_t orig_addr, size_t size,
425 : : enum dma_data_direction dir)
426 : : {
427 : : unsigned long flags;
428 : : phys_addr_t tlb_addr;
429 : : unsigned int nslots, stride, index, wrap;
430 : : int i;
431 : : unsigned long mask;
432 : : unsigned long offset_slots;
433 : : unsigned long max_slots;
434 : :
435 [ # # ]: 0 : if (no_iotlb_memory)
436 : 0 : panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
437 : :
438 : : mask = dma_get_seg_boundary(hwdev);
439 : :
440 : 0 : tbl_dma_addr &= mask;
441 : :
442 : 0 : offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
443 : :
444 : : /*
445 : : * Carefully handle integer overflow which can occur when mask == ~0UL.
446 : : */
447 : : max_slots = mask + 1
448 : 0 : ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
449 [ # # ]: 0 : : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
450 : :
451 : : /*
452 : : * For mappings greater than a page, we limit the stride (and
453 : : * hence alignment) to a page size.
454 : : */
455 : 0 : nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
456 [ # # ]: 0 : if (size > PAGE_SIZE)
457 : : stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
458 : : else
459 : : stride = 1;
460 : :
461 [ # # ]: 0 : BUG_ON(!nslots);
462 : :
463 : : /*
464 : : * Find suitable number of IO TLB entries size that will fit this
465 : : * request and allocate a buffer from that IO TLB pool.
466 : : */
467 : 0 : spin_lock_irqsave(&io_tlb_lock, flags);
468 : 0 : index = ALIGN(io_tlb_index, stride);
469 [ # # ]: 0 : if (index >= io_tlb_nslabs)
470 : : index = 0;
471 : : wrap = index;
472 : :
473 : : do {
474 [ # # ]: 0 : while (iommu_is_span_boundary(index, nslots, offset_slots,
475 : : max_slots)) {
476 : 0 : index += stride;
477 [ # # ]: 0 : if (index >= io_tlb_nslabs)
478 : : index = 0;
479 [ # # ]: 0 : if (index == wrap)
480 : : goto not_found;
481 : : }
482 : :
483 : : /*
484 : : * If we find a slot that indicates we have 'nslots' number of
485 : : * contiguous buffers, we allocate the buffers from that slot
486 : : * and mark the entries as '0' indicating unavailable.
487 : : */
488 [ # # ]: 0 : if (io_tlb_list[index] >= nslots) {
489 : : int count = 0;
490 : :
491 [ # # ]: 0 : for (i = index; i < (int) (index + nslots); i++)
492 : 0 : io_tlb_list[i] = 0;
493 [ # # ][ # # ]: 0 : for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
494 : 0 : io_tlb_list[i] = ++count;
495 : 0 : tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
496 : :
497 : : /*
498 : : * Update the indices to avoid searching in the next
499 : : * round.
500 : : */
501 : 0 : io_tlb_index = ((index + nslots) < io_tlb_nslabs
502 [ # # ]: 0 : ? (index + nslots) : 0);
503 : :
504 : : goto found;
505 : : }
506 : 0 : index += stride;
507 [ # # ]: 0 : if (index >= io_tlb_nslabs)
508 : : index = 0;
509 [ # # ]: 0 : } while (index != wrap);
510 : :
511 : : not_found:
512 : : spin_unlock_irqrestore(&io_tlb_lock, flags);
513 [ # # ]: 0 : if (printk_ratelimit())
514 : 0 : dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
515 : : return SWIOTLB_MAP_ERROR;
516 : : found:
517 : : spin_unlock_irqrestore(&io_tlb_lock, flags);
518 : :
519 : : /*
520 : : * Save away the mapping from the original address to the DMA address.
521 : : * This is needed when we sync the memory. Then we sync the buffer if
522 : : * needed.
523 : : */
524 [ # # ]: 0 : for (i = 0; i < nslots; i++)
525 : 0 : io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
526 [ # # ]: 0 : if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
527 : 0 : swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
528 : :
529 : 0 : return tlb_addr;
530 : : }
531 : : EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
532 : :
533 : : /*
534 : : * Allocates bounce buffer and returns its kernel virtual address.
535 : : */
536 : :
537 : 0 : phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
538 : : enum dma_data_direction dir)
539 : : {
540 : 0 : dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
541 : :
542 : 0 : return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
543 : : }
544 : :
545 : : /*
546 : : * dma_addr is the kernel virtual address of the bounce buffer to unmap.
547 : : */
548 : 0 : void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
549 : : size_t size, enum dma_data_direction dir)
550 : : {
551 : : unsigned long flags;
552 : 0 : int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
553 : 0 : int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
554 : 0 : phys_addr_t orig_addr = io_tlb_orig_addr[index];
555 : :
556 : : /*
557 : : * First, sync the memory before unmapping the entry
558 : : */
559 [ # # ][ # # ]: 0 : if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
560 : 0 : swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
561 : :
562 : : /*
563 : : * Return the buffer to the free list by setting the corresponding
564 : : * entries to indicate the number of contiguous entries available.
565 : : * While returning the entries to the free list, we merge the entries
566 : : * with slots below and above the pool being returned.
567 : : */
568 : 0 : spin_lock_irqsave(&io_tlb_lock, flags);
569 : : {
570 [ # # ]: 0 : count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
571 : 0 : io_tlb_list[index + nslots] : 0);
572 : : /*
573 : : * Step 1: return the slots to the free list, merging the
574 : : * slots with superceeding slots
575 : : */
576 [ # # ]: 0 : for (i = index + nslots - 1; i >= index; i--)
577 : 0 : io_tlb_list[i] = ++count;
578 : : /*
579 : : * Step 2: merge the returned slots with the preceding slots,
580 : : * if available (non zero)
581 : : */
582 [ # # ][ # # ]: 0 : for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
583 : 0 : io_tlb_list[i] = ++count;
584 : : }
585 : : spin_unlock_irqrestore(&io_tlb_lock, flags);
586 : 0 : }
587 : : EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
588 : :
589 : 0 : void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
590 : : size_t size, enum dma_data_direction dir,
591 : : enum dma_sync_target target)
592 : : {
593 : 0 : int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
594 : 0 : phys_addr_t orig_addr = io_tlb_orig_addr[index];
595 : :
596 : 0 : orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
597 : :
598 [ # # # ]: 0 : switch (target) {
599 : : case SYNC_FOR_CPU:
600 [ # # ]: 0 : if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
601 : 0 : swiotlb_bounce(orig_addr, tlb_addr,
602 : : size, DMA_FROM_DEVICE);
603 : : else
604 [ # # ]: 0 : BUG_ON(dir != DMA_TO_DEVICE);
605 : : break;
606 : : case SYNC_FOR_DEVICE:
607 [ # # ]: 0 : if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
608 : 0 : swiotlb_bounce(orig_addr, tlb_addr,
609 : : size, DMA_TO_DEVICE);
610 : : else
611 [ # # ]: 0 : BUG_ON(dir != DMA_FROM_DEVICE);
612 : : break;
613 : : default:
614 : 0 : BUG();
615 : : }
616 : 0 : }
617 : : EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
618 : :
619 : : void *
620 : 0 : swiotlb_alloc_coherent(struct device *hwdev, size_t size,
621 : : dma_addr_t *dma_handle, gfp_t flags)
622 : : {
623 : : dma_addr_t dev_addr;
624 : : void *ret;
625 [ # # ][ # # ]: 0 : int order = get_order(size);
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
626 : : u64 dma_mask = DMA_BIT_MASK(32);
627 : :
628 [ # # ][ # # ]: 0 : if (hwdev && hwdev->coherent_dma_mask)
629 : : dma_mask = hwdev->coherent_dma_mask;
630 : :
631 : 0 : ret = (void *)__get_free_pages(flags, order);
632 [ # # ]: 0 : if (ret) {
633 : : dev_addr = swiotlb_virt_to_bus(hwdev, ret);
634 [ # # ]: 0 : if (dev_addr + size - 1 > dma_mask) {
635 : : /*
636 : : * The allocated memory isn't reachable by the device.
637 : : */
638 : 0 : free_pages((unsigned long) ret, order);
639 : : ret = NULL;
640 : : }
641 : : }
642 [ # # ]: 0 : if (!ret) {
643 : : /*
644 : : * We are either out of memory or the device can't DMA to
645 : : * GFP_DMA memory; fall back on map_single(), which
646 : : * will grab memory from the lowest available address range.
647 : : */
648 : 0 : phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
649 [ # # ]: 0 : if (paddr == SWIOTLB_MAP_ERROR)
650 : : return NULL;
651 : :
652 : : ret = phys_to_virt(paddr);
653 : : dev_addr = phys_to_dma(hwdev, paddr);
654 : :
655 : : /* Confirm address can be DMA'd by device */
656 [ # # ]: 0 : if (dev_addr + size - 1 > dma_mask) {
657 : 0 : printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
658 : : (unsigned long long)dma_mask,
659 : : (unsigned long long)dev_addr);
660 : :
661 : : /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
662 : 0 : swiotlb_tbl_unmap_single(hwdev, paddr,
663 : : size, DMA_TO_DEVICE);
664 : 0 : return NULL;
665 : : }
666 : : }
667 : :
668 : 0 : *dma_handle = dev_addr;
669 [ # # ]: 0 : memset(ret, 0, size);
670 : :
671 : 0 : return ret;
672 : : }
673 : : EXPORT_SYMBOL(swiotlb_alloc_coherent);
674 : :
675 : : void
676 : 0 : swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
677 : : dma_addr_t dev_addr)
678 : : {
679 : : phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
680 : :
681 [ # # ]: 0 : WARN_ON(irqs_disabled());
682 [ # # ]: 0 : if (!is_swiotlb_buffer(paddr))
683 [ # # ][ # # ]: 0 : free_pages((unsigned long)vaddr, get_order(size));
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
684 : : else
685 : : /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
686 : 0 : swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
687 : 0 : }
688 : : EXPORT_SYMBOL(swiotlb_free_coherent);
689 : :
690 : : static void
691 : 0 : swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
692 : : int do_panic)
693 : : {
694 : : /*
695 : : * Ran out of IOMMU space for this operation. This is very bad.
696 : : * Unfortunately the drivers cannot handle this operation properly.
697 : : * unless they check for dma_mapping_error (most don't)
698 : : * When the mapping is small enough return a static buffer to limit
699 : : * the damage, or panic when the transfer is too big.
700 : : */
701 [ # # ]: 0 : printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
702 : : "device %s\n", size, dev ? dev_name(dev) : "?");
703 : :
704 [ # # ][ # # ]: 0 : if (size <= io_tlb_overflow || !do_panic)
705 : 0 : return;
706 : :
707 [ # # ]: 0 : if (dir == DMA_BIDIRECTIONAL)
708 : 0 : panic("DMA: Random memory could be DMA accessed\n");
709 [ # # ]: 0 : if (dir == DMA_FROM_DEVICE)
710 : 0 : panic("DMA: Random memory could be DMA written\n");
711 [ # # ]: 0 : if (dir == DMA_TO_DEVICE)
712 : 0 : panic("DMA: Random memory could be DMA read\n");
713 : : }
714 : :
715 : : /*
716 : : * Map a single buffer of the indicated size for DMA in streaming mode. The
717 : : * physical address to use is returned.
718 : : *
719 : : * Once the device is given the dma address, the device owns this memory until
720 : : * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
721 : : */
722 : 0 : dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
723 : : unsigned long offset, size_t size,
724 : : enum dma_data_direction dir,
725 : : struct dma_attrs *attrs)
726 : : {
727 : 0 : phys_addr_t map, phys = page_to_phys(page) + offset;
728 : : dma_addr_t dev_addr = phys_to_dma(dev, phys);
729 : :
730 [ # # ]: 0 : BUG_ON(dir == DMA_NONE);
731 : : /*
732 : : * If the address happens to be in the device's DMA window,
733 : : * we can safely return the device addr and not worry about bounce
734 : : * buffering it.
735 : : */
736 [ # # ][ # # ]: 0 : if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
737 : : return dev_addr;
738 : :
739 : 0 : trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
740 : :
741 : : /* Oh well, have to allocate and map a bounce buffer. */
742 : 0 : map = map_single(dev, phys, size, dir);
743 [ # # ]: 0 : if (map == SWIOTLB_MAP_ERROR) {
744 : 0 : swiotlb_full(dev, size, dir, 1);
745 : 0 : return phys_to_dma(dev, io_tlb_overflow_buffer);
746 : : }
747 : :
748 : : dev_addr = phys_to_dma(dev, map);
749 : :
750 : : /* Ensure that the address returned is DMA'ble */
751 [ # # ]: 0 : if (!dma_capable(dev, dev_addr, size)) {
752 : 0 : swiotlb_tbl_unmap_single(dev, map, size, dir);
753 : 0 : return phys_to_dma(dev, io_tlb_overflow_buffer);
754 : : }
755 : :
756 : : return dev_addr;
757 : : }
758 : : EXPORT_SYMBOL_GPL(swiotlb_map_page);
759 : :
760 : : /*
761 : : * Unmap a single streaming mode DMA translation. The dma_addr and size must
762 : : * match what was provided for in a previous swiotlb_map_page call. All
763 : : * other usages are undefined.
764 : : *
765 : : * After this call, reads by the cpu to the buffer are guaranteed to see
766 : : * whatever the device wrote there.
767 : : */
768 : 0 : static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
769 : : size_t size, enum dma_data_direction dir)
770 : : {
771 : : phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
772 : :
773 [ # # ]: 0 : BUG_ON(dir == DMA_NONE);
774 : :
775 [ # # ]: 0 : if (is_swiotlb_buffer(paddr)) {
776 : 0 : swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
777 : 0 : return;
778 : : }
779 : :
780 [ # # ]: 0 : if (dir != DMA_FROM_DEVICE)
781 : : return;
782 : :
783 : : /*
784 : : * phys_to_virt doesn't work with hihgmem page but we could
785 : : * call dma_mark_clean() with hihgmem page here. However, we
786 : : * are fine since dma_mark_clean() is null on POWERPC. We can
787 : : * make dma_mark_clean() take a physical address if necessary.
788 : : */
789 : : dma_mark_clean(phys_to_virt(paddr), size);
790 : : }
791 : :
792 : 0 : void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
793 : : size_t size, enum dma_data_direction dir,
794 : : struct dma_attrs *attrs)
795 : : {
796 : 0 : unmap_single(hwdev, dev_addr, size, dir);
797 : 0 : }
798 : : EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
799 : :
800 : : /*
801 : : * Make physical memory consistent for a single streaming mode DMA translation
802 : : * after a transfer.
803 : : *
804 : : * If you perform a swiotlb_map_page() but wish to interrogate the buffer
805 : : * using the cpu, yet do not wish to teardown the dma mapping, you must
806 : : * call this function before doing so. At the next point you give the dma
807 : : * address back to the card, you must first perform a
808 : : * swiotlb_dma_sync_for_device, and then the device again owns the buffer
809 : : */
810 : : static void
811 : 0 : swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
812 : : size_t size, enum dma_data_direction dir,
813 : : enum dma_sync_target target)
814 : : {
815 : : phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
816 : :
817 [ # # ]: 0 : BUG_ON(dir == DMA_NONE);
818 : :
819 [ # # ]: 0 : if (is_swiotlb_buffer(paddr)) {
820 : 0 : swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
821 : 0 : return;
822 : : }
823 : :
824 [ # # ]: 0 : if (dir != DMA_FROM_DEVICE)
825 : : return;
826 : :
827 : : dma_mark_clean(phys_to_virt(paddr), size);
828 : : }
829 : :
830 : : void
831 : 0 : swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
832 : : size_t size, enum dma_data_direction dir)
833 : : {
834 : 0 : swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
835 : 0 : }
836 : : EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
837 : :
838 : : void
839 : 0 : swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
840 : : size_t size, enum dma_data_direction dir)
841 : : {
842 : 0 : swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
843 : 0 : }
844 : : EXPORT_SYMBOL(swiotlb_sync_single_for_device);
845 : :
846 : : /*
847 : : * Map a set of buffers described by scatterlist in streaming mode for DMA.
848 : : * This is the scatter-gather version of the above swiotlb_map_page
849 : : * interface. Here the scatter gather list elements are each tagged with the
850 : : * appropriate dma address and length. They are obtained via
851 : : * sg_dma_{address,length}(SG).
852 : : *
853 : : * NOTE: An implementation may be able to use a smaller number of
854 : : * DMA address/length pairs than there are SG table elements.
855 : : * (for example via virtual mapping capabilities)
856 : : * The routine returns the number of addr/length pairs actually
857 : : * used, at most nents.
858 : : *
859 : : * Device ownership issues as mentioned above for swiotlb_map_page are the
860 : : * same here.
861 : : */
862 : : int
863 : 0 : swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
864 : : enum dma_data_direction dir, struct dma_attrs *attrs)
865 : : {
866 : : struct scatterlist *sg;
867 : : int i;
868 : :
869 [ # # ]: 0 : BUG_ON(dir == DMA_NONE);
870 : :
871 [ # # ]: 0 : for_each_sg(sgl, sg, nelems, i) {
872 : : phys_addr_t paddr = sg_phys(sg);
873 : : dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
874 : :
875 [ # # ][ # # ]: 0 : if (swiotlb_force ||
876 : 0 : !dma_capable(hwdev, dev_addr, sg->length)) {
877 : 0 : phys_addr_t map = map_single(hwdev, sg_phys(sg),
878 : : sg->length, dir);
879 [ # # ]: 0 : if (map == SWIOTLB_MAP_ERROR) {
880 : : /* Don't panic here, we expect map_sg users
881 : : to do proper error handling. */
882 : 0 : swiotlb_full(hwdev, sg->length, dir, 0);
883 : 0 : swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
884 : : attrs);
885 : 0 : sg_dma_len(sgl) = 0;
886 : 0 : return 0;
887 : : }
888 : 0 : sg->dma_address = phys_to_dma(hwdev, map);
889 : : } else
890 : 0 : sg->dma_address = dev_addr;
891 : : sg_dma_len(sg) = sg->length;
892 : : }
893 : : return nelems;
894 : : }
895 : : EXPORT_SYMBOL(swiotlb_map_sg_attrs);
896 : :
897 : : int
898 : 0 : swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
899 : : enum dma_data_direction dir)
900 : : {
901 : 0 : return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
902 : : }
903 : : EXPORT_SYMBOL(swiotlb_map_sg);
904 : :
905 : : /*
906 : : * Unmap a set of streaming mode DMA translations. Again, cpu read rules
907 : : * concerning calls here are the same as for swiotlb_unmap_page() above.
908 : : */
909 : : void
910 : 0 : swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
911 : : int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
912 : : {
913 : : struct scatterlist *sg;
914 : : int i;
915 : :
916 [ # # ]: 0 : BUG_ON(dir == DMA_NONE);
917 : :
918 [ # # ]: 0 : for_each_sg(sgl, sg, nelems, i)
919 : 0 : unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
920 : :
921 : 0 : }
922 : : EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
923 : :
924 : : void
925 : 0 : swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
926 : : enum dma_data_direction dir)
927 : : {
928 : 0 : return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
929 : : }
930 : : EXPORT_SYMBOL(swiotlb_unmap_sg);
931 : :
932 : : /*
933 : : * Make physical memory consistent for a set of streaming mode DMA translations
934 : : * after a transfer.
935 : : *
936 : : * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
937 : : * and usage.
938 : : */
939 : : static void
940 : 0 : swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
941 : : int nelems, enum dma_data_direction dir,
942 : : enum dma_sync_target target)
943 : : {
944 : : struct scatterlist *sg;
945 : : int i;
946 : :
947 [ # # ]: 0 : for_each_sg(sgl, sg, nelems, i)
948 : 0 : swiotlb_sync_single(hwdev, sg->dma_address,
949 : : sg_dma_len(sg), dir, target);
950 : 0 : }
951 : :
952 : : void
953 : 0 : swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
954 : : int nelems, enum dma_data_direction dir)
955 : : {
956 : 0 : swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
957 : 0 : }
958 : : EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
959 : :
960 : : void
961 : 0 : swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
962 : : int nelems, enum dma_data_direction dir)
963 : : {
964 : 0 : swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
965 : 0 : }
966 : : EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
967 : :
968 : : int
969 : 0 : swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
970 : : {
971 : 0 : return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
972 : : }
973 : : EXPORT_SYMBOL(swiotlb_dma_mapping_error);
974 : :
975 : : /*
976 : : * Return whether the given device DMA address mask can be supported
977 : : * properly. For example, if your device can only drive the low 24-bits
978 : : * during bus mastering, then you would pass 0x00ffffff as the mask to
979 : : * this function.
980 : : */
981 : : int
982 : 0 : swiotlb_dma_supported(struct device *hwdev, u64 mask)
983 : : {
984 : 0 : return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
985 : : }
986 : : EXPORT_SYMBOL(swiotlb_dma_supported);
|