Branch data Line data Source code
1 : : /*
2 : : * Read-Copy Update mechanism for mutual exclusion
3 : : *
4 : : * This program is free software; you can redistribute it and/or modify
5 : : * it under the terms of the GNU General Public License as published by
6 : : * the Free Software Foundation; either version 2 of the License, or
7 : : * (at your option) any later version.
8 : : *
9 : : * This program is distributed in the hope that it will be useful,
10 : : * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 : : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 : : * GNU General Public License for more details.
13 : : *
14 : : * You should have received a copy of the GNU General Public License
15 : : * along with this program; if not, write to the Free Software
16 : : * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 : : *
18 : : * Copyright IBM Corporation, 2001
19 : : *
20 : : * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 : : *
22 : : * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 : : * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 : : * Papers:
25 : : * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 : : * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 : : *
28 : : * For detailed explanation of Read-Copy Update mechanism see -
29 : : * http://lse.sourceforge.net/locking/rcupdate.html
30 : : *
31 : : */
32 : :
33 : : #ifndef __LINUX_RCUPDATE_H
34 : : #define __LINUX_RCUPDATE_H
35 : :
36 : : #include <linux/types.h>
37 : : #include <linux/cache.h>
38 : : #include <linux/spinlock.h>
39 : : #include <linux/threads.h>
40 : : #include <linux/cpumask.h>
41 : : #include <linux/seqlock.h>
42 : : #include <linux/lockdep.h>
43 : : #include <linux/completion.h>
44 : : #include <linux/debugobjects.h>
45 : : #include <linux/bug.h>
46 : : #include <linux/compiler.h>
47 : :
48 : : #ifdef CONFIG_RCU_TORTURE_TEST
49 : : extern int rcutorture_runnable; /* for sysctl */
50 : : #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51 : :
52 : : #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53 : : void rcutorture_record_test_transition(void);
54 : : void rcutorture_record_progress(unsigned long vernum);
55 : : void do_trace_rcu_torture_read(const char *rcutorturename,
56 : : struct rcu_head *rhp,
57 : : unsigned long secs,
58 : : unsigned long c_old,
59 : : unsigned long c);
60 : : #else
61 : : static inline void rcutorture_record_test_transition(void)
62 : : {
63 : : }
64 : : static inline void rcutorture_record_progress(unsigned long vernum)
65 : : {
66 : : }
67 : : #ifdef CONFIG_RCU_TRACE
68 : : void do_trace_rcu_torture_read(const char *rcutorturename,
69 : : struct rcu_head *rhp,
70 : : unsigned long secs,
71 : : unsigned long c_old,
72 : : unsigned long c);
73 : : #else
74 : : #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
75 : : do { } while (0)
76 : : #endif
77 : : #endif
78 : :
79 : : #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
80 : : #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
81 : : #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
82 : : #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
83 : : #define ulong2long(a) (*(long *)(&(a)))
84 : :
85 : : /* Exported common interfaces */
86 : :
87 : : #ifdef CONFIG_PREEMPT_RCU
88 : :
89 : : /**
90 : : * call_rcu() - Queue an RCU callback for invocation after a grace period.
91 : : * @head: structure to be used for queueing the RCU updates.
92 : : * @func: actual callback function to be invoked after the grace period
93 : : *
94 : : * The callback function will be invoked some time after a full grace
95 : : * period elapses, in other words after all pre-existing RCU read-side
96 : : * critical sections have completed. However, the callback function
97 : : * might well execute concurrently with RCU read-side critical sections
98 : : * that started after call_rcu() was invoked. RCU read-side critical
99 : : * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
100 : : * and may be nested.
101 : : *
102 : : * Note that all CPUs must agree that the grace period extended beyond
103 : : * all pre-existing RCU read-side critical section. On systems with more
104 : : * than one CPU, this means that when "func()" is invoked, each CPU is
105 : : * guaranteed to have executed a full memory barrier since the end of its
106 : : * last RCU read-side critical section whose beginning preceded the call
107 : : * to call_rcu(). It also means that each CPU executing an RCU read-side
108 : : * critical section that continues beyond the start of "func()" must have
109 : : * executed a memory barrier after the call_rcu() but before the beginning
110 : : * of that RCU read-side critical section. Note that these guarantees
111 : : * include CPUs that are offline, idle, or executing in user mode, as
112 : : * well as CPUs that are executing in the kernel.
113 : : *
114 : : * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
115 : : * resulting RCU callback function "func()", then both CPU A and CPU B are
116 : : * guaranteed to execute a full memory barrier during the time interval
117 : : * between the call to call_rcu() and the invocation of "func()" -- even
118 : : * if CPU A and CPU B are the same CPU (but again only if the system has
119 : : * more than one CPU).
120 : : */
121 : : void call_rcu(struct rcu_head *head,
122 : : void (*func)(struct rcu_head *head));
123 : :
124 : : #else /* #ifdef CONFIG_PREEMPT_RCU */
125 : :
126 : : /* In classic RCU, call_rcu() is just call_rcu_sched(). */
127 : : #define call_rcu call_rcu_sched
128 : :
129 : : #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
130 : :
131 : : /**
132 : : * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
133 : : * @head: structure to be used for queueing the RCU updates.
134 : : * @func: actual callback function to be invoked after the grace period
135 : : *
136 : : * The callback function will be invoked some time after a full grace
137 : : * period elapses, in other words after all currently executing RCU
138 : : * read-side critical sections have completed. call_rcu_bh() assumes
139 : : * that the read-side critical sections end on completion of a softirq
140 : : * handler. This means that read-side critical sections in process
141 : : * context must not be interrupted by softirqs. This interface is to be
142 : : * used when most of the read-side critical sections are in softirq context.
143 : : * RCU read-side critical sections are delimited by :
144 : : * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
145 : : * OR
146 : : * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
147 : : * These may be nested.
148 : : *
149 : : * See the description of call_rcu() for more detailed information on
150 : : * memory ordering guarantees.
151 : : */
152 : : void call_rcu_bh(struct rcu_head *head,
153 : : void (*func)(struct rcu_head *head));
154 : :
155 : : /**
156 : : * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
157 : : * @head: structure to be used for queueing the RCU updates.
158 : : * @func: actual callback function to be invoked after the grace period
159 : : *
160 : : * The callback function will be invoked some time after a full grace
161 : : * period elapses, in other words after all currently executing RCU
162 : : * read-side critical sections have completed. call_rcu_sched() assumes
163 : : * that the read-side critical sections end on enabling of preemption
164 : : * or on voluntary preemption.
165 : : * RCU read-side critical sections are delimited by :
166 : : * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
167 : : * OR
168 : : * anything that disables preemption.
169 : : * These may be nested.
170 : : *
171 : : * See the description of call_rcu() for more detailed information on
172 : : * memory ordering guarantees.
173 : : */
174 : : void call_rcu_sched(struct rcu_head *head,
175 : : void (*func)(struct rcu_head *rcu));
176 : :
177 : : void synchronize_sched(void);
178 : :
179 : : #ifdef CONFIG_PREEMPT_RCU
180 : :
181 : : void __rcu_read_lock(void);
182 : : void __rcu_read_unlock(void);
183 : : void rcu_read_unlock_special(struct task_struct *t);
184 : : void synchronize_rcu(void);
185 : :
186 : : /*
187 : : * Defined as a macro as it is a very low level header included from
188 : : * areas that don't even know about current. This gives the rcu_read_lock()
189 : : * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
190 : : * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
191 : : */
192 : : #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
193 : :
194 : : #else /* #ifdef CONFIG_PREEMPT_RCU */
195 : :
196 : : static inline void __rcu_read_lock(void)
197 : : {
198 : 278086270 : preempt_disable();
199 : : }
200 : :
201 : : static inline void __rcu_read_unlock(void)
202 : : {
203 : 221309630 : preempt_enable();
204 : : }
205 : :
206 : 0 : static inline void synchronize_rcu(void)
207 : : {
208 : 162 : synchronize_sched();
209 : 0 : }
210 : :
211 : : static inline int rcu_preempt_depth(void)
212 : : {
213 : : return 0;
214 : : }
215 : :
216 : : #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
217 : :
218 : : /* Internal to kernel */
219 : : void rcu_init(void);
220 : : void rcu_sched_qs(int cpu);
221 : : void rcu_bh_qs(int cpu);
222 : : void rcu_check_callbacks(int cpu, int user);
223 : : struct notifier_block;
224 : : void rcu_idle_enter(void);
225 : : void rcu_idle_exit(void);
226 : : void rcu_irq_enter(void);
227 : : void rcu_irq_exit(void);
228 : :
229 : : #ifdef CONFIG_RCU_USER_QS
230 : : void rcu_user_enter(void);
231 : : void rcu_user_exit(void);
232 : : #else
233 : : static inline void rcu_user_enter(void) { }
234 : : static inline void rcu_user_exit(void) { }
235 : : static inline void rcu_user_hooks_switch(struct task_struct *prev,
236 : : struct task_struct *next) { }
237 : : #endif /* CONFIG_RCU_USER_QS */
238 : :
239 : : /**
240 : : * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
241 : : * @a: Code that RCU needs to pay attention to.
242 : : *
243 : : * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
244 : : * in the inner idle loop, that is, between the rcu_idle_enter() and
245 : : * the rcu_idle_exit() -- RCU will happily ignore any such read-side
246 : : * critical sections. However, things like powertop need tracepoints
247 : : * in the inner idle loop.
248 : : *
249 : : * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
250 : : * will tell RCU that it needs to pay attending, invoke its argument
251 : : * (in this example, a call to the do_something_with_RCU() function),
252 : : * and then tell RCU to go back to ignoring this CPU. It is permissible
253 : : * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
254 : : * quite limited. If deeper nesting is required, it will be necessary
255 : : * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
256 : : */
257 : : #define RCU_NONIDLE(a) \
258 : : do { \
259 : : rcu_irq_enter(); \
260 : : do { a; } while (0); \
261 : : rcu_irq_exit(); \
262 : : } while (0)
263 : :
264 : : #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
265 : : bool __rcu_is_watching(void);
266 : : #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
267 : :
268 : : /*
269 : : * Infrastructure to implement the synchronize_() primitives in
270 : : * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
271 : : */
272 : :
273 : : typedef void call_rcu_func_t(struct rcu_head *head,
274 : : void (*func)(struct rcu_head *head));
275 : : void wait_rcu_gp(call_rcu_func_t crf);
276 : :
277 : : #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
278 : : #include <linux/rcutree.h>
279 : : #elif defined(CONFIG_TINY_RCU)
280 : : #include <linux/rcutiny.h>
281 : : #else
282 : : #error "Unknown RCU implementation specified to kernel configuration"
283 : : #endif
284 : :
285 : : /*
286 : : * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
287 : : * initialization and destruction of rcu_head on the stack. rcu_head structures
288 : : * allocated dynamically in the heap or defined statically don't need any
289 : : * initialization.
290 : : */
291 : : #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
292 : : void init_rcu_head_on_stack(struct rcu_head *head);
293 : : void destroy_rcu_head_on_stack(struct rcu_head *head);
294 : : #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
295 : : static inline void init_rcu_head_on_stack(struct rcu_head *head)
296 : : {
297 : : }
298 : :
299 : : static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
300 : : {
301 : : }
302 : : #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
303 : :
304 : : #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
305 : : bool rcu_lockdep_current_cpu_online(void);
306 : : #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
307 : : static inline bool rcu_lockdep_current_cpu_online(void)
308 : : {
309 : : return 1;
310 : : }
311 : : #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
312 : :
313 : : #ifdef CONFIG_DEBUG_LOCK_ALLOC
314 : :
315 : : static inline void rcu_lock_acquire(struct lockdep_map *map)
316 : : {
317 : : lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
318 : : }
319 : :
320 : : static inline void rcu_lock_release(struct lockdep_map *map)
321 : : {
322 : : lock_release(map, 1, _THIS_IP_);
323 : : }
324 : :
325 : : extern struct lockdep_map rcu_lock_map;
326 : : extern struct lockdep_map rcu_bh_lock_map;
327 : : extern struct lockdep_map rcu_sched_lock_map;
328 : : extern struct lockdep_map rcu_callback_map;
329 : : extern int debug_lockdep_rcu_enabled(void);
330 : :
331 : : /**
332 : : * rcu_read_lock_held() - might we be in RCU read-side critical section?
333 : : *
334 : : * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
335 : : * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
336 : : * this assumes we are in an RCU read-side critical section unless it can
337 : : * prove otherwise. This is useful for debug checks in functions that
338 : : * require that they be called within an RCU read-side critical section.
339 : : *
340 : : * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
341 : : * and while lockdep is disabled.
342 : : *
343 : : * Note that rcu_read_lock() and the matching rcu_read_unlock() must
344 : : * occur in the same context, for example, it is illegal to invoke
345 : : * rcu_read_unlock() in process context if the matching rcu_read_lock()
346 : : * was invoked from within an irq handler.
347 : : *
348 : : * Note that rcu_read_lock() is disallowed if the CPU is either idle or
349 : : * offline from an RCU perspective, so check for those as well.
350 : : */
351 : : static inline int rcu_read_lock_held(void)
352 : : {
353 : : if (!debug_lockdep_rcu_enabled())
354 : : return 1;
355 : : if (!rcu_is_watching())
356 : : return 0;
357 : : if (!rcu_lockdep_current_cpu_online())
358 : : return 0;
359 : : return lock_is_held(&rcu_lock_map);
360 : : }
361 : :
362 : : /*
363 : : * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
364 : : * hell.
365 : : */
366 : : int rcu_read_lock_bh_held(void);
367 : :
368 : : /**
369 : : * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
370 : : *
371 : : * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
372 : : * RCU-sched read-side critical section. In absence of
373 : : * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
374 : : * critical section unless it can prove otherwise. Note that disabling
375 : : * of preemption (including disabling irqs) counts as an RCU-sched
376 : : * read-side critical section. This is useful for debug checks in functions
377 : : * that required that they be called within an RCU-sched read-side
378 : : * critical section.
379 : : *
380 : : * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
381 : : * and while lockdep is disabled.
382 : : *
383 : : * Note that if the CPU is in the idle loop from an RCU point of
384 : : * view (ie: that we are in the section between rcu_idle_enter() and
385 : : * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
386 : : * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
387 : : * that are in such a section, considering these as in extended quiescent
388 : : * state, so such a CPU is effectively never in an RCU read-side critical
389 : : * section regardless of what RCU primitives it invokes. This state of
390 : : * affairs is required --- we need to keep an RCU-free window in idle
391 : : * where the CPU may possibly enter into low power mode. This way we can
392 : : * notice an extended quiescent state to other CPUs that started a grace
393 : : * period. Otherwise we would delay any grace period as long as we run in
394 : : * the idle task.
395 : : *
396 : : * Similarly, we avoid claiming an SRCU read lock held if the current
397 : : * CPU is offline.
398 : : */
399 : : #ifdef CONFIG_PREEMPT_COUNT
400 : : static inline int rcu_read_lock_sched_held(void)
401 : : {
402 : : int lockdep_opinion = 0;
403 : :
404 : : if (!debug_lockdep_rcu_enabled())
405 : : return 1;
406 : : if (!rcu_is_watching())
407 : : return 0;
408 : : if (!rcu_lockdep_current_cpu_online())
409 : : return 0;
410 : : if (debug_locks)
411 : : lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
412 : : return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
413 : : }
414 : : #else /* #ifdef CONFIG_PREEMPT_COUNT */
415 : : static inline int rcu_read_lock_sched_held(void)
416 : : {
417 : : return 1;
418 : : }
419 : : #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
420 : :
421 : : #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
422 : :
423 : : # define rcu_lock_acquire(a) do { } while (0)
424 : : # define rcu_lock_release(a) do { } while (0)
425 : :
426 : : static inline int rcu_read_lock_held(void)
427 : : {
428 : : return 1;
429 : : }
430 : :
431 : : static inline int rcu_read_lock_bh_held(void)
432 : : {
433 : : return 1;
434 : : }
435 : :
436 : : #ifdef CONFIG_PREEMPT_COUNT
437 : : static inline int rcu_read_lock_sched_held(void)
438 : : {
439 : : return preempt_count() != 0 || irqs_disabled();
440 : : }
441 : : #else /* #ifdef CONFIG_PREEMPT_COUNT */
442 : : static inline int rcu_read_lock_sched_held(void)
443 : : {
444 : : return 1;
445 : : }
446 : : #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
447 : :
448 : : #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
449 : :
450 : : #ifdef CONFIG_PROVE_RCU
451 : :
452 : : /**
453 : : * rcu_lockdep_assert - emit lockdep splat if specified condition not met
454 : : * @c: condition to check
455 : : * @s: informative message
456 : : */
457 : : #define rcu_lockdep_assert(c, s) \
458 : : do { \
459 : : static bool __section(.data.unlikely) __warned; \
460 : : if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
461 : : __warned = true; \
462 : : lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
463 : : } \
464 : : } while (0)
465 : :
466 : : #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
467 : : static inline void rcu_preempt_sleep_check(void)
468 : : {
469 : : rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
470 : : "Illegal context switch in RCU read-side critical section");
471 : : }
472 : : #else /* #ifdef CONFIG_PROVE_RCU */
473 : : static inline void rcu_preempt_sleep_check(void)
474 : : {
475 : : }
476 : : #endif /* #else #ifdef CONFIG_PROVE_RCU */
477 : :
478 : : #define rcu_sleep_check() \
479 : : do { \
480 : : rcu_preempt_sleep_check(); \
481 : : rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
482 : : "Illegal context switch in RCU-bh" \
483 : : " read-side critical section"); \
484 : : rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
485 : : "Illegal context switch in RCU-sched"\
486 : : " read-side critical section"); \
487 : : } while (0)
488 : :
489 : : #else /* #ifdef CONFIG_PROVE_RCU */
490 : :
491 : : #define rcu_lockdep_assert(c, s) do { } while (0)
492 : : #define rcu_sleep_check() do { } while (0)
493 : :
494 : : #endif /* #else #ifdef CONFIG_PROVE_RCU */
495 : :
496 : : /*
497 : : * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
498 : : * and rcu_assign_pointer(). Some of these could be folded into their
499 : : * callers, but they are left separate in order to ease introduction of
500 : : * multiple flavors of pointers to match the multiple flavors of RCU
501 : : * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
502 : : * the future.
503 : : */
504 : :
505 : : #ifdef __CHECKER__
506 : : #define rcu_dereference_sparse(p, space) \
507 : : ((void)(((typeof(*p) space *)p) == p))
508 : : #else /* #ifdef __CHECKER__ */
509 : : #define rcu_dereference_sparse(p, space)
510 : : #endif /* #else #ifdef __CHECKER__ */
511 : :
512 : : #define __rcu_access_pointer(p, space) \
513 : : ({ \
514 : : typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
515 : : rcu_dereference_sparse(p, space); \
516 : : ((typeof(*p) __force __kernel *)(_________p1)); \
517 : : })
518 : : #define __rcu_dereference_check(p, c, space) \
519 : : ({ \
520 : : typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
521 : : rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
522 : : " usage"); \
523 : : rcu_dereference_sparse(p, space); \
524 : : smp_read_barrier_depends(); \
525 : : ((typeof(*p) __force __kernel *)(_________p1)); \
526 : : })
527 : : #define __rcu_dereference_protected(p, c, space) \
528 : : ({ \
529 : : rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
530 : : " usage"); \
531 : : rcu_dereference_sparse(p, space); \
532 : : ((typeof(*p) __force __kernel *)(p)); \
533 : : })
534 : :
535 : : #define __rcu_access_index(p, space) \
536 : : ({ \
537 : : typeof(p) _________p1 = ACCESS_ONCE(p); \
538 : : rcu_dereference_sparse(p, space); \
539 : : (_________p1); \
540 : : })
541 : : #define __rcu_dereference_index_check(p, c) \
542 : : ({ \
543 : : typeof(p) _________p1 = ACCESS_ONCE(p); \
544 : : rcu_lockdep_assert(c, \
545 : : "suspicious rcu_dereference_index_check()" \
546 : : " usage"); \
547 : : smp_read_barrier_depends(); \
548 : : (_________p1); \
549 : : })
550 : :
551 : : /**
552 : : * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
553 : : * @v: The value to statically initialize with.
554 : : */
555 : : #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
556 : :
557 : : /**
558 : : * rcu_assign_pointer() - assign to RCU-protected pointer
559 : : * @p: pointer to assign to
560 : : * @v: value to assign (publish)
561 : : *
562 : : * Assigns the specified value to the specified RCU-protected
563 : : * pointer, ensuring that any concurrent RCU readers will see
564 : : * any prior initialization.
565 : : *
566 : : * Inserts memory barriers on architectures that require them
567 : : * (which is most of them), and also prevents the compiler from
568 : : * reordering the code that initializes the structure after the pointer
569 : : * assignment. More importantly, this call documents which pointers
570 : : * will be dereferenced by RCU read-side code.
571 : : *
572 : : * In some special cases, you may use RCU_INIT_POINTER() instead
573 : : * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
574 : : * to the fact that it does not constrain either the CPU or the compiler.
575 : : * That said, using RCU_INIT_POINTER() when you should have used
576 : : * rcu_assign_pointer() is a very bad thing that results in
577 : : * impossible-to-diagnose memory corruption. So please be careful.
578 : : * See the RCU_INIT_POINTER() comment header for details.
579 : : *
580 : : * Note that rcu_assign_pointer() evaluates each of its arguments only
581 : : * once, appearances notwithstanding. One of the "extra" evaluations
582 : : * is in typeof() and the other visible only to sparse (__CHECKER__),
583 : : * neither of which actually execute the argument. As with most cpp
584 : : * macros, this execute-arguments-only-once property is important, so
585 : : * please be careful when making changes to rcu_assign_pointer() and the
586 : : * other macros that it invokes.
587 : : */
588 : : #define rcu_assign_pointer(p, v) \
589 : : do { \
590 : : smp_wmb(); \
591 : : ACCESS_ONCE(p) = RCU_INITIALIZER(v); \
592 : : } while (0)
593 : :
594 : :
595 : : /**
596 : : * rcu_access_pointer() - fetch RCU pointer with no dereferencing
597 : : * @p: The pointer to read
598 : : *
599 : : * Return the value of the specified RCU-protected pointer, but omit the
600 : : * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
601 : : * when the value of this pointer is accessed, but the pointer is not
602 : : * dereferenced, for example, when testing an RCU-protected pointer against
603 : : * NULL. Although rcu_access_pointer() may also be used in cases where
604 : : * update-side locks prevent the value of the pointer from changing, you
605 : : * should instead use rcu_dereference_protected() for this use case.
606 : : *
607 : : * It is also permissible to use rcu_access_pointer() when read-side
608 : : * access to the pointer was removed at least one grace period ago, as
609 : : * is the case in the context of the RCU callback that is freeing up
610 : : * the data, or after a synchronize_rcu() returns. This can be useful
611 : : * when tearing down multi-linked structures after a grace period
612 : : * has elapsed.
613 : : */
614 : : #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
615 : :
616 : : /**
617 : : * rcu_dereference_check() - rcu_dereference with debug checking
618 : : * @p: The pointer to read, prior to dereferencing
619 : : * @c: The conditions under which the dereference will take place
620 : : *
621 : : * Do an rcu_dereference(), but check that the conditions under which the
622 : : * dereference will take place are correct. Typically the conditions
623 : : * indicate the various locking conditions that should be held at that
624 : : * point. The check should return true if the conditions are satisfied.
625 : : * An implicit check for being in an RCU read-side critical section
626 : : * (rcu_read_lock()) is included.
627 : : *
628 : : * For example:
629 : : *
630 : : * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
631 : : *
632 : : * could be used to indicate to lockdep that foo->bar may only be dereferenced
633 : : * if either rcu_read_lock() is held, or that the lock required to replace
634 : : * the bar struct at foo->bar is held.
635 : : *
636 : : * Note that the list of conditions may also include indications of when a lock
637 : : * need not be held, for example during initialisation or destruction of the
638 : : * target struct:
639 : : *
640 : : * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
641 : : * atomic_read(&foo->usage) == 0);
642 : : *
643 : : * Inserts memory barriers on architectures that require them
644 : : * (currently only the Alpha), prevents the compiler from refetching
645 : : * (and from merging fetches), and, more importantly, documents exactly
646 : : * which pointers are protected by RCU and checks that the pointer is
647 : : * annotated as __rcu.
648 : : */
649 : : #define rcu_dereference_check(p, c) \
650 : : __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
651 : :
652 : : /**
653 : : * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
654 : : * @p: The pointer to read, prior to dereferencing
655 : : * @c: The conditions under which the dereference will take place
656 : : *
657 : : * This is the RCU-bh counterpart to rcu_dereference_check().
658 : : */
659 : : #define rcu_dereference_bh_check(p, c) \
660 : : __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
661 : :
662 : : /**
663 : : * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
664 : : * @p: The pointer to read, prior to dereferencing
665 : : * @c: The conditions under which the dereference will take place
666 : : *
667 : : * This is the RCU-sched counterpart to rcu_dereference_check().
668 : : */
669 : : #define rcu_dereference_sched_check(p, c) \
670 : : __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
671 : : __rcu)
672 : :
673 : : #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
674 : :
675 : : /*
676 : : * The tracing infrastructure traces RCU (we want that), but unfortunately
677 : : * some of the RCU checks causes tracing to lock up the system.
678 : : *
679 : : * The tracing version of rcu_dereference_raw() must not call
680 : : * rcu_read_lock_held().
681 : : */
682 : : #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
683 : :
684 : : /**
685 : : * rcu_access_index() - fetch RCU index with no dereferencing
686 : : * @p: The index to read
687 : : *
688 : : * Return the value of the specified RCU-protected index, but omit the
689 : : * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
690 : : * when the value of this index is accessed, but the index is not
691 : : * dereferenced, for example, when testing an RCU-protected index against
692 : : * -1. Although rcu_access_index() may also be used in cases where
693 : : * update-side locks prevent the value of the index from changing, you
694 : : * should instead use rcu_dereference_index_protected() for this use case.
695 : : */
696 : : #define rcu_access_index(p) __rcu_access_index((p), __rcu)
697 : :
698 : : /**
699 : : * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
700 : : * @p: The pointer to read, prior to dereferencing
701 : : * @c: The conditions under which the dereference will take place
702 : : *
703 : : * Similar to rcu_dereference_check(), but omits the sparse checking.
704 : : * This allows rcu_dereference_index_check() to be used on integers,
705 : : * which can then be used as array indices. Attempting to use
706 : : * rcu_dereference_check() on an integer will give compiler warnings
707 : : * because the sparse address-space mechanism relies on dereferencing
708 : : * the RCU-protected pointer. Dereferencing integers is not something
709 : : * that even gcc will put up with.
710 : : *
711 : : * Note that this function does not implicitly check for RCU read-side
712 : : * critical sections. If this function gains lots of uses, it might
713 : : * make sense to provide versions for each flavor of RCU, but it does
714 : : * not make sense as of early 2010.
715 : : */
716 : : #define rcu_dereference_index_check(p, c) \
717 : : __rcu_dereference_index_check((p), (c))
718 : :
719 : : /**
720 : : * rcu_dereference_protected() - fetch RCU pointer when updates prevented
721 : : * @p: The pointer to read, prior to dereferencing
722 : : * @c: The conditions under which the dereference will take place
723 : : *
724 : : * Return the value of the specified RCU-protected pointer, but omit
725 : : * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
726 : : * is useful in cases where update-side locks prevent the value of the
727 : : * pointer from changing. Please note that this primitive does -not-
728 : : * prevent the compiler from repeating this reference or combining it
729 : : * with other references, so it should not be used without protection
730 : : * of appropriate locks.
731 : : *
732 : : * This function is only for update-side use. Using this function
733 : : * when protected only by rcu_read_lock() will result in infrequent
734 : : * but very ugly failures.
735 : : */
736 : : #define rcu_dereference_protected(p, c) \
737 : : __rcu_dereference_protected((p), (c), __rcu)
738 : :
739 : :
740 : : /**
741 : : * rcu_dereference() - fetch RCU-protected pointer for dereferencing
742 : : * @p: The pointer to read, prior to dereferencing
743 : : *
744 : : * This is a simple wrapper around rcu_dereference_check().
745 : : */
746 : : #define rcu_dereference(p) rcu_dereference_check(p, 0)
747 : :
748 : : /**
749 : : * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
750 : : * @p: The pointer to read, prior to dereferencing
751 : : *
752 : : * Makes rcu_dereference_check() do the dirty work.
753 : : */
754 : : #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
755 : :
756 : : /**
757 : : * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
758 : : * @p: The pointer to read, prior to dereferencing
759 : : *
760 : : * Makes rcu_dereference_check() do the dirty work.
761 : : */
762 : : #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
763 : :
764 : : /**
765 : : * rcu_read_lock() - mark the beginning of an RCU read-side critical section
766 : : *
767 : : * When synchronize_rcu() is invoked on one CPU while other CPUs
768 : : * are within RCU read-side critical sections, then the
769 : : * synchronize_rcu() is guaranteed to block until after all the other
770 : : * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
771 : : * on one CPU while other CPUs are within RCU read-side critical
772 : : * sections, invocation of the corresponding RCU callback is deferred
773 : : * until after the all the other CPUs exit their critical sections.
774 : : *
775 : : * Note, however, that RCU callbacks are permitted to run concurrently
776 : : * with new RCU read-side critical sections. One way that this can happen
777 : : * is via the following sequence of events: (1) CPU 0 enters an RCU
778 : : * read-side critical section, (2) CPU 1 invokes call_rcu() to register
779 : : * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
780 : : * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
781 : : * callback is invoked. This is legal, because the RCU read-side critical
782 : : * section that was running concurrently with the call_rcu() (and which
783 : : * therefore might be referencing something that the corresponding RCU
784 : : * callback would free up) has completed before the corresponding
785 : : * RCU callback is invoked.
786 : : *
787 : : * RCU read-side critical sections may be nested. Any deferred actions
788 : : * will be deferred until the outermost RCU read-side critical section
789 : : * completes.
790 : : *
791 : : * You can avoid reading and understanding the next paragraph by
792 : : * following this rule: don't put anything in an rcu_read_lock() RCU
793 : : * read-side critical section that would block in a !PREEMPT kernel.
794 : : * But if you want the full story, read on!
795 : : *
796 : : * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
797 : : * is illegal to block while in an RCU read-side critical section. In
798 : : * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
799 : : * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
800 : : * be preempted, but explicit blocking is illegal. Finally, in preemptible
801 : : * RCU implementations in real-time (with -rt patchset) kernel builds,
802 : : * RCU read-side critical sections may be preempted and they may also
803 : : * block, but only when acquiring spinlocks that are subject to priority
804 : : * inheritance.
805 : : */
806 : : static inline void rcu_read_lock(void)
807 : : {
808 : : __rcu_read_lock();
809 : : __acquire(RCU);
810 : : rcu_lock_acquire(&rcu_lock_map);
811 : : rcu_lockdep_assert(rcu_is_watching(),
812 : : "rcu_read_lock() used illegally while idle");
813 : : }
814 : :
815 : : /*
816 : : * So where is rcu_write_lock()? It does not exist, as there is no
817 : : * way for writers to lock out RCU readers. This is a feature, not
818 : : * a bug -- this property is what provides RCU's performance benefits.
819 : : * Of course, writers must coordinate with each other. The normal
820 : : * spinlock primitives work well for this, but any other technique may be
821 : : * used as well. RCU does not care how the writers keep out of each
822 : : * others' way, as long as they do so.
823 : : */
824 : :
825 : : /**
826 : : * rcu_read_unlock() - marks the end of an RCU read-side critical section.
827 : : *
828 : : * See rcu_read_lock() for more information.
829 : : */
830 : : static inline void rcu_read_unlock(void)
831 : : {
832 : : rcu_lockdep_assert(rcu_is_watching(),
833 : : "rcu_read_unlock() used illegally while idle");
834 : : rcu_lock_release(&rcu_lock_map);
835 : : __release(RCU);
836 : : __rcu_read_unlock();
837 : : }
838 : :
839 : : /**
840 : : * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
841 : : *
842 : : * This is equivalent of rcu_read_lock(), but to be used when updates
843 : : * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
844 : : * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
845 : : * softirq handler to be a quiescent state, a process in RCU read-side
846 : : * critical section must be protected by disabling softirqs. Read-side
847 : : * critical sections in interrupt context can use just rcu_read_lock(),
848 : : * though this should at least be commented to avoid confusing people
849 : : * reading the code.
850 : : *
851 : : * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
852 : : * must occur in the same context, for example, it is illegal to invoke
853 : : * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
854 : : * was invoked from some other task.
855 : : */
856 : : static inline void rcu_read_lock_bh(void)
857 : : {
858 : : local_bh_disable();
859 : : __acquire(RCU_BH);
860 : : rcu_lock_acquire(&rcu_bh_lock_map);
861 : : rcu_lockdep_assert(rcu_is_watching(),
862 : : "rcu_read_lock_bh() used illegally while idle");
863 : : }
864 : :
865 : : /*
866 : : * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
867 : : *
868 : : * See rcu_read_lock_bh() for more information.
869 : : */
870 : : static inline void rcu_read_unlock_bh(void)
871 : : {
872 : : rcu_lockdep_assert(rcu_is_watching(),
873 : : "rcu_read_unlock_bh() used illegally while idle");
874 : : rcu_lock_release(&rcu_bh_lock_map);
875 : : __release(RCU_BH);
876 : : local_bh_enable();
877 : : }
878 : :
879 : : /**
880 : : * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
881 : : *
882 : : * This is equivalent of rcu_read_lock(), but to be used when updates
883 : : * are being done using call_rcu_sched() or synchronize_rcu_sched().
884 : : * Read-side critical sections can also be introduced by anything that
885 : : * disables preemption, including local_irq_disable() and friends.
886 : : *
887 : : * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
888 : : * must occur in the same context, for example, it is illegal to invoke
889 : : * rcu_read_unlock_sched() from process context if the matching
890 : : * rcu_read_lock_sched() was invoked from an NMI handler.
891 : : */
892 : : static inline void rcu_read_lock_sched(void)
893 : : {
894 : 0 : preempt_disable();
895 : : __acquire(RCU_SCHED);
896 : : rcu_lock_acquire(&rcu_sched_lock_map);
897 : : rcu_lockdep_assert(rcu_is_watching(),
898 : : "rcu_read_lock_sched() used illegally while idle");
899 : : }
900 : :
901 : : /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
902 : : static inline notrace void rcu_read_lock_sched_notrace(void)
903 : : {
904 : 0 : preempt_disable_notrace();
905 : : __acquire(RCU_SCHED);
906 : : }
907 : :
908 : : /*
909 : : * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
910 : : *
911 : : * See rcu_read_lock_sched for more information.
912 : : */
913 : : static inline void rcu_read_unlock_sched(void)
914 : : {
915 : : rcu_lockdep_assert(rcu_is_watching(),
916 : : "rcu_read_unlock_sched() used illegally while idle");
917 : : rcu_lock_release(&rcu_sched_lock_map);
918 : : __release(RCU_SCHED);
919 : 0 : preempt_enable();
920 : : }
921 : :
922 : : /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
923 : : static inline notrace void rcu_read_unlock_sched_notrace(void)
924 : : {
925 : : __release(RCU_SCHED);
926 [ + + ][ + + ]: 274126 : preempt_enable_notrace();
[ + + ][ + + ]
927 : : }
928 : :
929 : : /**
930 : : * RCU_INIT_POINTER() - initialize an RCU protected pointer
931 : : *
932 : : * Initialize an RCU-protected pointer in special cases where readers
933 : : * do not need ordering constraints on the CPU or the compiler. These
934 : : * special cases are:
935 : : *
936 : : * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
937 : : * 2. The caller has taken whatever steps are required to prevent
938 : : * RCU readers from concurrently accessing this pointer -or-
939 : : * 3. The referenced data structure has already been exposed to
940 : : * readers either at compile time or via rcu_assign_pointer() -and-
941 : : * a. You have not made -any- reader-visible changes to
942 : : * this structure since then -or-
943 : : * b. It is OK for readers accessing this structure from its
944 : : * new location to see the old state of the structure. (For
945 : : * example, the changes were to statistical counters or to
946 : : * other state where exact synchronization is not required.)
947 : : *
948 : : * Failure to follow these rules governing use of RCU_INIT_POINTER() will
949 : : * result in impossible-to-diagnose memory corruption. As in the structures
950 : : * will look OK in crash dumps, but any concurrent RCU readers might
951 : : * see pre-initialized values of the referenced data structure. So
952 : : * please be very careful how you use RCU_INIT_POINTER()!!!
953 : : *
954 : : * If you are creating an RCU-protected linked structure that is accessed
955 : : * by a single external-to-structure RCU-protected pointer, then you may
956 : : * use RCU_INIT_POINTER() to initialize the internal RCU-protected
957 : : * pointers, but you must use rcu_assign_pointer() to initialize the
958 : : * external-to-structure pointer -after- you have completely initialized
959 : : * the reader-accessible portions of the linked structure.
960 : : */
961 : : #define RCU_INIT_POINTER(p, v) \
962 : : do { \
963 : : p = RCU_INITIALIZER(v); \
964 : : } while (0)
965 : :
966 : : /**
967 : : * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
968 : : *
969 : : * GCC-style initialization for an RCU-protected pointer in a structure field.
970 : : */
971 : : #define RCU_POINTER_INITIALIZER(p, v) \
972 : : .p = RCU_INITIALIZER(v)
973 : :
974 : : /*
975 : : * Does the specified offset indicate that the corresponding rcu_head
976 : : * structure can be handled by kfree_rcu()?
977 : : */
978 : : #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
979 : :
980 : : /*
981 : : * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
982 : : */
983 : : #define __kfree_rcu(head, offset) \
984 : : do { \
985 : : BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
986 : : kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
987 : : } while (0)
988 : :
989 : : /**
990 : : * kfree_rcu() - kfree an object after a grace period.
991 : : * @ptr: pointer to kfree
992 : : * @rcu_head: the name of the struct rcu_head within the type of @ptr.
993 : : *
994 : : * Many rcu callbacks functions just call kfree() on the base structure.
995 : : * These functions are trivial, but their size adds up, and furthermore
996 : : * when they are used in a kernel module, that module must invoke the
997 : : * high-latency rcu_barrier() function at module-unload time.
998 : : *
999 : : * The kfree_rcu() function handles this issue. Rather than encoding a
1000 : : * function address in the embedded rcu_head structure, kfree_rcu() instead
1001 : : * encodes the offset of the rcu_head structure within the base structure.
1002 : : * Because the functions are not allowed in the low-order 4096 bytes of
1003 : : * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1004 : : * If the offset is larger than 4095 bytes, a compile-time error will
1005 : : * be generated in __kfree_rcu(). If this error is triggered, you can
1006 : : * either fall back to use of call_rcu() or rearrange the structure to
1007 : : * position the rcu_head structure into the first 4096 bytes.
1008 : : *
1009 : : * Note that the allowable offset might decrease in the future, for example,
1010 : : * to allow something like kmem_cache_free_rcu().
1011 : : *
1012 : : * The BUILD_BUG_ON check must not involve any function calls, hence the
1013 : : * checks are done in macros here.
1014 : : */
1015 : : #define kfree_rcu(ptr, rcu_head) \
1016 : : __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1017 : :
1018 : : #ifdef CONFIG_RCU_NOCB_CPU
1019 : : bool rcu_is_nocb_cpu(int cpu);
1020 : : #else
1021 : : static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1022 : : #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1023 : :
1024 : :
1025 : : /* Only for use by adaptive-ticks code. */
1026 : : #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1027 : : bool rcu_sys_is_idle(void);
1028 : : void rcu_sysidle_force_exit(void);
1029 : : #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1030 : :
1031 : : static inline bool rcu_sys_is_idle(void)
1032 : : {
1033 : : return false;
1034 : : }
1035 : :
1036 : : static inline void rcu_sysidle_force_exit(void)
1037 : : {
1038 : : }
1039 : :
1040 : : #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1041 : :
1042 : :
1043 : : #endif /* __LINUX_RCUPDATE_H */
|