Branch data Line data Source code
1 : : #ifndef _LINUX_MM_H
2 : : #define _LINUX_MM_H
3 : :
4 : : #include <linux/errno.h>
5 : :
6 : : #ifdef __KERNEL__
7 : :
8 : : #include <linux/mmdebug.h>
9 : : #include <linux/gfp.h>
10 : : #include <linux/bug.h>
11 : : #include <linux/list.h>
12 : : #include <linux/mmzone.h>
13 : : #include <linux/rbtree.h>
14 : : #include <linux/atomic.h>
15 : : #include <linux/debug_locks.h>
16 : : #include <linux/mm_types.h>
17 : : #include <linux/range.h>
18 : : #include <linux/pfn.h>
19 : : #include <linux/bit_spinlock.h>
20 : : #include <linux/shrinker.h>
21 : :
22 : : struct mempolicy;
23 : : struct anon_vma;
24 : : struct anon_vma_chain;
25 : : struct file_ra_state;
26 : : struct user_struct;
27 : : struct writeback_control;
28 : :
29 : : #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
30 : : extern unsigned long max_mapnr;
31 : :
32 : : static inline void set_max_mapnr(unsigned long limit)
33 : : {
34 : 0 : max_mapnr = limit;
35 : : }
36 : : #else
37 : : static inline void set_max_mapnr(unsigned long limit) { }
38 : : #endif
39 : :
40 : : extern unsigned long totalram_pages;
41 : : extern void * high_memory;
42 : : extern int page_cluster;
43 : :
44 : : #ifdef CONFIG_SYSCTL
45 : : extern int sysctl_legacy_va_layout;
46 : : #else
47 : : #define sysctl_legacy_va_layout 0
48 : : #endif
49 : :
50 : : #include <asm/page.h>
51 : : #include <asm/pgtable.h>
52 : : #include <asm/processor.h>
53 : :
54 : : #ifndef __pa_symbol
55 : : #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56 : : #endif
57 : :
58 : : extern unsigned long sysctl_user_reserve_kbytes;
59 : : extern unsigned long sysctl_admin_reserve_kbytes;
60 : :
61 : : extern int sysctl_overcommit_memory;
62 : : extern int sysctl_overcommit_ratio;
63 : : extern unsigned long sysctl_overcommit_kbytes;
64 : :
65 : : extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 : : size_t *, loff_t *);
67 : : extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 : : size_t *, loff_t *);
69 : :
70 : : #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71 : :
72 : : /* to align the pointer to the (next) page boundary */
73 : : #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74 : :
75 : : /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76 : : #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77 : :
78 : : /*
79 : : * Linux kernel virtual memory manager primitives.
80 : : * The idea being to have a "virtual" mm in the same way
81 : : * we have a virtual fs - giving a cleaner interface to the
82 : : * mm details, and allowing different kinds of memory mappings
83 : : * (from shared memory to executable loading to arbitrary
84 : : * mmap() functions).
85 : : */
86 : :
87 : : extern struct kmem_cache *vm_area_cachep;
88 : :
89 : : #ifndef CONFIG_MMU
90 : : extern struct rb_root nommu_region_tree;
91 : : extern struct rw_semaphore nommu_region_sem;
92 : :
93 : : extern unsigned int kobjsize(const void *objp);
94 : : #endif
95 : :
96 : : /*
97 : : * vm_flags in vm_area_struct, see mm_types.h.
98 : : */
99 : : #define VM_NONE 0x00000000
100 : :
101 : : #define VM_READ 0x00000001 /* currently active flags */
102 : : #define VM_WRITE 0x00000002
103 : : #define VM_EXEC 0x00000004
104 : : #define VM_SHARED 0x00000008
105 : :
106 : : /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107 : : #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108 : : #define VM_MAYWRITE 0x00000020
109 : : #define VM_MAYEXEC 0x00000040
110 : : #define VM_MAYSHARE 0x00000080
111 : :
112 : : #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
113 : : #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
114 : : #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115 : :
116 : : #define VM_LOCKED 0x00002000
117 : : #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118 : :
119 : : /* Used by sys_madvise() */
120 : : #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121 : : #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122 : :
123 : : #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124 : : #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
125 : : #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
126 : : #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
127 : : #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128 : : #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
129 : : #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
130 : : #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
131 : :
132 : : #ifdef CONFIG_MEM_SOFT_DIRTY
133 : : # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134 : : #else
135 : : # define VM_SOFTDIRTY 0
136 : : #endif
137 : :
138 : : #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
139 : : #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140 : : #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
141 : : #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
142 : :
143 : : #if defined(CONFIG_X86)
144 : : # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145 : : #elif defined(CONFIG_PPC)
146 : : # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147 : : #elif defined(CONFIG_PARISC)
148 : : # define VM_GROWSUP VM_ARCH_1
149 : : #elif defined(CONFIG_METAG)
150 : : # define VM_GROWSUP VM_ARCH_1
151 : : #elif defined(CONFIG_IA64)
152 : : # define VM_GROWSUP VM_ARCH_1
153 : : #elif !defined(CONFIG_MMU)
154 : : # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155 : : #endif
156 : :
157 : : #ifndef VM_GROWSUP
158 : : # define VM_GROWSUP VM_NONE
159 : : #endif
160 : :
161 : : /* Bits set in the VMA until the stack is in its final location */
162 : : #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163 : :
164 : : #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165 : : #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166 : : #endif
167 : :
168 : : #ifdef CONFIG_STACK_GROWSUP
169 : : #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170 : : #else
171 : : #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172 : : #endif
173 : :
174 : : /*
175 : : * Special vmas that are non-mergable, non-mlock()able.
176 : : * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177 : : */
178 : : #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
179 : :
180 : : /*
181 : : * mapping from the currently active vm_flags protection bits (the
182 : : * low four bits) to a page protection mask..
183 : : */
184 : : extern pgprot_t protection_map[16];
185 : :
186 : : #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
187 : : #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
188 : : #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
189 : : #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
190 : : #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
191 : : #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
192 : : #define FAULT_FLAG_TRIED 0x40 /* second try */
193 : : #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
194 : :
195 : : /*
196 : : * vm_fault is filled by the the pagefault handler and passed to the vma's
197 : : * ->fault function. The vma's ->fault is responsible for returning a bitmask
198 : : * of VM_FAULT_xxx flags that give details about how the fault was handled.
199 : : *
200 : : * pgoff should be used in favour of virtual_address, if possible. If pgoff
201 : : * is used, one may implement ->remap_pages to get nonlinear mapping support.
202 : : */
203 : : struct vm_fault {
204 : : unsigned int flags; /* FAULT_FLAG_xxx flags */
205 : : pgoff_t pgoff; /* Logical page offset based on vma */
206 : : void __user *virtual_address; /* Faulting virtual address */
207 : :
208 : : struct page *page; /* ->fault handlers should return a
209 : : * page here, unless VM_FAULT_NOPAGE
210 : : * is set (which is also implied by
211 : : * VM_FAULT_ERROR).
212 : : */
213 : : };
214 : :
215 : : /*
216 : : * These are the virtual MM functions - opening of an area, closing and
217 : : * unmapping it (needed to keep files on disk up-to-date etc), pointer
218 : : * to the functions called when a no-page or a wp-page exception occurs.
219 : : */
220 : : struct vm_operations_struct {
221 : : void (*open)(struct vm_area_struct * area);
222 : : void (*close)(struct vm_area_struct * area);
223 : : int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
224 : :
225 : : /* notification that a previously read-only page is about to become
226 : : * writable, if an error is returned it will cause a SIGBUS */
227 : : int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
228 : :
229 : : /* called by access_process_vm when get_user_pages() fails, typically
230 : : * for use by special VMAs that can switch between memory and hardware
231 : : */
232 : : int (*access)(struct vm_area_struct *vma, unsigned long addr,
233 : : void *buf, int len, int write);
234 : : #ifdef CONFIG_NUMA
235 : : /*
236 : : * set_policy() op must add a reference to any non-NULL @new mempolicy
237 : : * to hold the policy upon return. Caller should pass NULL @new to
238 : : * remove a policy and fall back to surrounding context--i.e. do not
239 : : * install a MPOL_DEFAULT policy, nor the task or system default
240 : : * mempolicy.
241 : : */
242 : : int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
243 : :
244 : : /*
245 : : * get_policy() op must add reference [mpol_get()] to any policy at
246 : : * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
247 : : * in mm/mempolicy.c will do this automatically.
248 : : * get_policy() must NOT add a ref if the policy at (vma,addr) is not
249 : : * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
250 : : * If no [shared/vma] mempolicy exists at the addr, get_policy() op
251 : : * must return NULL--i.e., do not "fallback" to task or system default
252 : : * policy.
253 : : */
254 : : struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
255 : : unsigned long addr);
256 : : int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
257 : : const nodemask_t *to, unsigned long flags);
258 : : #endif
259 : : /* called by sys_remap_file_pages() to populate non-linear mapping */
260 : : int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
261 : : unsigned long size, pgoff_t pgoff);
262 : : };
263 : :
264 : : struct mmu_gather;
265 : : struct inode;
266 : :
267 : : #define page_private(page) ((page)->private)
268 : : #define set_page_private(page, v) ((page)->private = (v))
269 : :
270 : : /* It's valid only if the page is free path or free_list */
271 : : static inline void set_freepage_migratetype(struct page *page, int migratetype)
272 : : {
273 : 46364669 : page->index = migratetype;
274 : : }
275 : :
276 : : /* It's valid only if the page is free path or free_list */
277 : : static inline int get_freepage_migratetype(struct page *page)
278 : : {
279 : 16362554 : return page->index;
280 : : }
281 : :
282 : : /*
283 : : * FIXME: take this include out, include page-flags.h in
284 : : * files which need it (119 of them)
285 : : */
286 : : #include <linux/page-flags.h>
287 : : #include <linux/huge_mm.h>
288 : :
289 : : /*
290 : : * Methods to modify the page usage count.
291 : : *
292 : : * What counts for a page usage:
293 : : * - cache mapping (page->mapping)
294 : : * - private data (page->private)
295 : : * - page mapped in a task's page tables, each mapping
296 : : * is counted separately
297 : : *
298 : : * Also, many kernel routines increase the page count before a critical
299 : : * routine so they can be sure the page doesn't go away from under them.
300 : : */
301 : :
302 : : /*
303 : : * Drop a ref, return true if the refcount fell to zero (the page has no users)
304 : : */
305 : : static inline int put_page_testzero(struct page *page)
306 : : {
307 : : VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
308 : 141352867 : return atomic_dec_and_test(&page->_count);
309 : : }
310 : :
311 : : /*
312 : : * Try to grab a ref unless the page has a refcount of zero, return false if
313 : : * that is the case.
314 : : * This can be called when MMU is off so it must not access
315 : : * any of the virtual mappings.
316 : : */
317 : : static inline int get_page_unless_zero(struct page *page)
318 : : {
319 : 50562949 : return atomic_inc_not_zero(&page->_count);
320 : : }
321 : :
322 : : /*
323 : : * Try to drop a ref unless the page has a refcount of one, return false if
324 : : * that is the case.
325 : : * This is to make sure that the refcount won't become zero after this drop.
326 : : * This can be called when MMU is off so it must not access
327 : : * any of the virtual mappings.
328 : : */
329 : : static inline int put_page_unless_one(struct page *page)
330 : : {
331 : : return atomic_add_unless(&page->_count, -1, 1);
332 : : }
333 : :
334 : : extern int page_is_ram(unsigned long pfn);
335 : :
336 : : /* Support for virtually mapped pages */
337 : : struct page *vmalloc_to_page(const void *addr);
338 : : unsigned long vmalloc_to_pfn(const void *addr);
339 : :
340 : : /*
341 : : * Determine if an address is within the vmalloc range
342 : : *
343 : : * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
344 : : * is no special casing required.
345 : : */
346 : : static inline int is_vmalloc_addr(const void *x)
347 : : {
348 : : #ifdef CONFIG_MMU
349 : 45940 : unsigned long addr = (unsigned long)x;
350 : :
351 [ + + ][ - + ]: 45940 : return addr >= VMALLOC_START && addr < VMALLOC_END;
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ - + ][ # # ]
352 : : #else
353 : : return 0;
354 : : #endif
355 : : }
356 : : #ifdef CONFIG_MMU
357 : : extern int is_vmalloc_or_module_addr(const void *x);
358 : : #else
359 : : static inline int is_vmalloc_or_module_addr(const void *x)
360 : : {
361 : : return 0;
362 : : }
363 : : #endif
364 : :
365 : : static inline void compound_lock(struct page *page)
366 : : {
367 : : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 : : VM_BUG_ON_PAGE(PageSlab(page), page);
369 : : bit_spin_lock(PG_compound_lock, &page->flags);
370 : : #endif
371 : : }
372 : :
373 : : static inline void compound_unlock(struct page *page)
374 : : {
375 : : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
376 : : VM_BUG_ON_PAGE(PageSlab(page), page);
377 : : bit_spin_unlock(PG_compound_lock, &page->flags);
378 : : #endif
379 : : }
380 : :
381 : : static inline unsigned long compound_lock_irqsave(struct page *page)
382 : : {
383 : : unsigned long uninitialized_var(flags);
384 : : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
385 : : local_irq_save(flags);
386 : : compound_lock(page);
387 : : #endif
388 : : return flags;
389 : : }
390 : :
391 : : static inline void compound_unlock_irqrestore(struct page *page,
392 : : unsigned long flags)
393 : : {
394 : : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
395 : : compound_unlock(page);
396 : : local_irq_restore(flags);
397 : : #endif
398 : : }
399 : :
400 : : static inline struct page *compound_head(struct page *page)
401 : : {
402 [ + + ][ + + ]: 64978616 : if (unlikely(PageTail(page))) {
[ # # ][ - + ]
[ # # ]
[ # + # # ]
[ # # ][ + + ]
[ # # ][ # # ]
[ # # ][ # # ]
403 : 20942 : struct page *head = page->first_page;
404 : :
405 : : /*
406 : : * page->first_page may be a dangling pointer to an old
407 : : * compound page, so recheck that it is still a tail
408 : : * page before returning.
409 : : */
410 : 20942 : smp_rmb();
411 [ - + ][ - + ]: 28635 : if (likely(PageTail(page)))
[ # # ][ # # ]
[ - + ][ # # ]
[ # # ][ - + ]
[ # # ][ # # ]
412 : : return head;
413 : : }
414 : : return page;
415 : : }
416 : :
417 : : /*
418 : : * The atomic page->_mapcount, starts from -1: so that transitions
419 : : * both from it and to it can be tracked, using atomic_inc_and_test
420 : : * and atomic_add_negative(-1).
421 : : */
422 : : static inline void page_mapcount_reset(struct page *page)
423 : : {
424 : 278945 : atomic_set(&(page)->_mapcount, -1);
425 : : }
426 : :
427 : : static inline int page_mapcount(struct page *page)
428 : : {
429 : 147210419 : return atomic_read(&(page)->_mapcount) + 1;
430 : : }
431 : :
432 : : static inline int page_count(struct page *page)
433 : : {
434 : 4378121 : return atomic_read(&compound_head(page)->_count);
435 : : }
436 : :
437 : : #ifdef CONFIG_HUGETLB_PAGE
438 : : extern int PageHeadHuge(struct page *page_head);
439 : : #else /* CONFIG_HUGETLB_PAGE */
440 : : static inline int PageHeadHuge(struct page *page_head)
441 : : {
442 : : return 0;
443 : : }
444 : : #endif /* CONFIG_HUGETLB_PAGE */
445 : :
446 : : static inline bool __compound_tail_refcounted(struct page *page)
447 : : {
448 [ # # ][ # # ]: 0 : return !PageSlab(page) && !PageHeadHuge(page);
[ # # ][ # # ]
[ # # ]
449 : : }
450 : :
451 : : /*
452 : : * This takes a head page as parameter and tells if the
453 : : * tail page reference counting can be skipped.
454 : : *
455 : : * For this to be safe, PageSlab and PageHeadHuge must remain true on
456 : : * any given page where they return true here, until all tail pins
457 : : * have been released.
458 : : */
459 : : static inline bool compound_tail_refcounted(struct page *page)
460 : : {
461 : : VM_BUG_ON_PAGE(!PageHead(page), page);
462 : : return __compound_tail_refcounted(page);
463 : : }
464 : :
465 : : static inline void get_huge_page_tail(struct page *page)
466 : : {
467 : : /*
468 : : * __split_huge_page_refcount() cannot run from under us.
469 : : */
470 : : VM_BUG_ON_PAGE(!PageTail(page), page);
471 : : VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
472 : : VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
473 [ # # ][ # # ]: 0 : if (compound_tail_refcounted(page->first_page))
474 : 0 : atomic_inc(&page->_mapcount);
475 : : }
476 : :
477 : : extern bool __get_page_tail(struct page *page);
478 : :
479 : : static inline void get_page(struct page *page)
480 : : {
481 [ - + ]: 59120361 : if (unlikely(PageTail(page)))
[ - + - + ]
[ - + - + ]
[ - + - + ]
[ - + ][ - + ]
[ - + ][ - + ]
[ - + ][ - + ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ - + ][ # # ]
[ - + ][ # # ]
[ # # ][ - +
# # # # ]
482 [ # # ][ # # ]: 0 : if (likely(__get_page_tail(page)))
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
483 : : return;
484 : : /*
485 : : * Getting a normal page or the head of a compound page
486 : : * requires to already have an elevated page->_count.
487 : : */
488 : : VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
489 : 38956352 : atomic_inc(&page->_count);
490 : : }
491 : :
492 : : static inline struct page *virt_to_head_page(const void *x)
493 : : {
494 : 107122134 : struct page *page = virt_to_page(x);
495 : : return compound_head(page);
496 : : }
497 : :
498 : : /*
499 : : * Setup the page count before being freed into the page allocator for
500 : : * the first time (boot or memory hotplug)
501 : : */
502 : : static inline void init_page_count(struct page *page)
503 : : {
504 : 0 : atomic_set(&page->_count, 1);
505 : : }
506 : :
507 : : /*
508 : : * PageBuddy() indicate that the page is free and in the buddy system
509 : : * (see mm/page_alloc.c).
510 : : *
511 : : * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
512 : : * -2 so that an underflow of the page_mapcount() won't be mistaken
513 : : * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
514 : : * efficiently by most CPU architectures.
515 : : */
516 : : #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
517 : :
518 : : static inline int PageBuddy(struct page *page)
519 : : {
520 : 47617968 : return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
521 : : }
522 : :
523 : : static inline void __SetPageBuddy(struct page *page)
524 : : {
525 : : VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
526 : 8876593 : atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
527 : : }
528 : :
529 : : static inline void __ClearPageBuddy(struct page *page)
530 : : {
531 : : VM_BUG_ON_PAGE(!PageBuddy(page), page);
532 : 28016198 : atomic_set(&page->_mapcount, -1);
533 : : }
534 : :
535 : : void put_page(struct page *page);
536 : : void put_pages_list(struct list_head *pages);
537 : :
538 : : void split_page(struct page *page, unsigned int order);
539 : : int split_free_page(struct page *page);
540 : :
541 : : /*
542 : : * Compound pages have a destructor function. Provide a
543 : : * prototype for that function and accessor functions.
544 : : * These are _only_ valid on the head of a PG_compound page.
545 : : */
546 : : typedef void compound_page_dtor(struct page *);
547 : :
548 : : static inline void set_compound_page_dtor(struct page *page,
549 : : compound_page_dtor *dtor)
550 : : {
551 : 1270 : page[1].lru.next = (void *)dtor;
552 : : }
553 : :
554 : : static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
555 : : {
556 : 13 : return (compound_page_dtor *)page[1].lru.next;
557 : : }
558 : :
559 : : static inline int compound_order(struct page *page)
560 : : {
561 [ - + ][ + + ]: 15658123 : if (!PageHead(page))
[ # # ]
562 : : return 0;
563 : 13 : return (unsigned long)page[1].lru.prev;
564 : : }
565 : :
566 : : static inline void set_compound_order(struct page *page, unsigned long order)
567 : : {
568 : 1270 : page[1].lru.prev = (void *)order;
569 : : }
570 : :
571 : : #ifdef CONFIG_MMU
572 : : /*
573 : : * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
574 : : * servicing faults for write access. In the normal case, do always want
575 : : * pte_mkwrite. But get_user_pages can cause write faults for mappings
576 : : * that do not have writing enabled, when used by access_process_vm.
577 : : */
578 : : static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
579 : : {
580 [ + ]: 16639590 : if (likely(vma->vm_flags & VM_WRITE))
[ # # + + ]
581 : : pte = pte_mkwrite(pte);
582 : : return pte;
583 : : }
584 : : #endif
585 : :
586 : : /*
587 : : * Multiple processes may "see" the same page. E.g. for untouched
588 : : * mappings of /dev/null, all processes see the same page full of
589 : : * zeroes, and text pages of executables and shared libraries have
590 : : * only one copy in memory, at most, normally.
591 : : *
592 : : * For the non-reserved pages, page_count(page) denotes a reference count.
593 : : * page_count() == 0 means the page is free. page->lru is then used for
594 : : * freelist management in the buddy allocator.
595 : : * page_count() > 0 means the page has been allocated.
596 : : *
597 : : * Pages are allocated by the slab allocator in order to provide memory
598 : : * to kmalloc and kmem_cache_alloc. In this case, the management of the
599 : : * page, and the fields in 'struct page' are the responsibility of mm/slab.c
600 : : * unless a particular usage is carefully commented. (the responsibility of
601 : : * freeing the kmalloc memory is the caller's, of course).
602 : : *
603 : : * A page may be used by anyone else who does a __get_free_page().
604 : : * In this case, page_count still tracks the references, and should only
605 : : * be used through the normal accessor functions. The top bits of page->flags
606 : : * and page->virtual store page management information, but all other fields
607 : : * are unused and could be used privately, carefully. The management of this
608 : : * page is the responsibility of the one who allocated it, and those who have
609 : : * subsequently been given references to it.
610 : : *
611 : : * The other pages (we may call them "pagecache pages") are completely
612 : : * managed by the Linux memory manager: I/O, buffers, swapping etc.
613 : : * The following discussion applies only to them.
614 : : *
615 : : * A pagecache page contains an opaque `private' member, which belongs to the
616 : : * page's address_space. Usually, this is the address of a circular list of
617 : : * the page's disk buffers. PG_private must be set to tell the VM to call
618 : : * into the filesystem to release these pages.
619 : : *
620 : : * A page may belong to an inode's memory mapping. In this case, page->mapping
621 : : * is the pointer to the inode, and page->index is the file offset of the page,
622 : : * in units of PAGE_CACHE_SIZE.
623 : : *
624 : : * If pagecache pages are not associated with an inode, they are said to be
625 : : * anonymous pages. These may become associated with the swapcache, and in that
626 : : * case PG_swapcache is set, and page->private is an offset into the swapcache.
627 : : *
628 : : * In either case (swapcache or inode backed), the pagecache itself holds one
629 : : * reference to the page. Setting PG_private should also increment the
630 : : * refcount. The each user mapping also has a reference to the page.
631 : : *
632 : : * The pagecache pages are stored in a per-mapping radix tree, which is
633 : : * rooted at mapping->page_tree, and indexed by offset.
634 : : * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
635 : : * lists, we instead now tag pages as dirty/writeback in the radix tree.
636 : : *
637 : : * All pagecache pages may be subject to I/O:
638 : : * - inode pages may need to be read from disk,
639 : : * - inode pages which have been modified and are MAP_SHARED may need
640 : : * to be written back to the inode on disk,
641 : : * - anonymous pages (including MAP_PRIVATE file mappings) which have been
642 : : * modified may need to be swapped out to swap space and (later) to be read
643 : : * back into memory.
644 : : */
645 : :
646 : : /*
647 : : * The zone field is never updated after free_area_init_core()
648 : : * sets it, so none of the operations on it need to be atomic.
649 : : */
650 : :
651 : : /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
652 : : #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
653 : : #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
654 : : #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
655 : : #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
656 : :
657 : : /*
658 : : * Define the bit shifts to access each section. For non-existent
659 : : * sections we define the shift as 0; that plus a 0 mask ensures
660 : : * the compiler will optimise away reference to them.
661 : : */
662 : : #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
663 : : #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
664 : : #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
665 : : #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
666 : :
667 : : /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
668 : : #ifdef NODE_NOT_IN_PAGE_FLAGS
669 : : #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
670 : : #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
671 : : SECTIONS_PGOFF : ZONES_PGOFF)
672 : : #else
673 : : #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
674 : : #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
675 : : NODES_PGOFF : ZONES_PGOFF)
676 : : #endif
677 : :
678 : : #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
679 : :
680 : : #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
681 : : #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
682 : : #endif
683 : :
684 : : #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
685 : : #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
686 : : #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
687 : : #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
688 : : #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
689 : :
690 : : static inline enum zone_type page_zonenum(const struct page *page)
691 : : {
692 : 759342313 : return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
693 : : }
694 : :
695 : : #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
696 : : #define SECTION_IN_PAGE_FLAGS
697 : : #endif
698 : :
699 : : /*
700 : : * The identification function is mainly used by the buddy allocator for
701 : : * determining if two pages could be buddies. We are not really identifying
702 : : * the zone since we could be using the section number id if we do not have
703 : : * node id available in page flags.
704 : : * We only guarantee that it will return the same value for two combinable
705 : : * pages in a zone.
706 : : */
707 : : static inline int page_zone_id(struct page *page)
708 : : {
709 : 94198861 : return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
710 : : }
711 : :
712 : : static inline int zone_to_nid(struct zone *zone)
713 : : {
714 : : #ifdef CONFIG_NUMA
715 : : return zone->node;
716 : : #else
717 : : return 0;
718 : : #endif
719 : : }
720 : :
721 : : #ifdef NODE_NOT_IN_PAGE_FLAGS
722 : : extern int page_to_nid(const struct page *page);
723 : : #else
724 : : static inline int page_to_nid(const struct page *page)
725 : : {
726 : : return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
727 : : }
728 : : #endif
729 : :
730 : : #ifdef CONFIG_NUMA_BALANCING
731 : : static inline int cpu_pid_to_cpupid(int cpu, int pid)
732 : : {
733 : : return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
734 : : }
735 : :
736 : : static inline int cpupid_to_pid(int cpupid)
737 : : {
738 : : return cpupid & LAST__PID_MASK;
739 : : }
740 : :
741 : : static inline int cpupid_to_cpu(int cpupid)
742 : : {
743 : : return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
744 : : }
745 : :
746 : : static inline int cpupid_to_nid(int cpupid)
747 : : {
748 : : return cpu_to_node(cpupid_to_cpu(cpupid));
749 : : }
750 : :
751 : : static inline bool cpupid_pid_unset(int cpupid)
752 : : {
753 : : return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
754 : : }
755 : :
756 : : static inline bool cpupid_cpu_unset(int cpupid)
757 : : {
758 : : return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
759 : : }
760 : :
761 : : static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
762 : : {
763 : : return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
764 : : }
765 : :
766 : : #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
767 : : #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
768 : : static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
769 : : {
770 : : return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
771 : : }
772 : :
773 : : static inline int page_cpupid_last(struct page *page)
774 : : {
775 : : return page->_last_cpupid;
776 : : }
777 : : static inline void page_cpupid_reset_last(struct page *page)
778 : : {
779 : : page->_last_cpupid = -1 & LAST_CPUPID_MASK;
780 : : }
781 : : #else
782 : : static inline int page_cpupid_last(struct page *page)
783 : : {
784 : : return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
785 : : }
786 : :
787 : : extern int page_cpupid_xchg_last(struct page *page, int cpupid);
788 : :
789 : : static inline void page_cpupid_reset_last(struct page *page)
790 : : {
791 : : int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
792 : :
793 : : page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
794 : : page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
795 : : }
796 : : #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
797 : : #else /* !CONFIG_NUMA_BALANCING */
798 : : static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
799 : : {
800 : : return page_to_nid(page); /* XXX */
801 : : }
802 : :
803 : : static inline int page_cpupid_last(struct page *page)
804 : : {
805 : : return page_to_nid(page); /* XXX */
806 : : }
807 : :
808 : : static inline int cpupid_to_nid(int cpupid)
809 : : {
810 : : return -1;
811 : : }
812 : :
813 : : static inline int cpupid_to_pid(int cpupid)
814 : : {
815 : : return -1;
816 : : }
817 : :
818 : : static inline int cpupid_to_cpu(int cpupid)
819 : : {
820 : : return -1;
821 : : }
822 : :
823 : : static inline int cpu_pid_to_cpupid(int nid, int pid)
824 : : {
825 : : return -1;
826 : : }
827 : :
828 : : static inline bool cpupid_pid_unset(int cpupid)
829 : : {
830 : : return 1;
831 : : }
832 : :
833 : : static inline void page_cpupid_reset_last(struct page *page)
834 : : {
835 : : }
836 : :
837 : : static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
838 : : {
839 : : return false;
840 : : }
841 : : #endif /* CONFIG_NUMA_BALANCING */
842 : :
843 : 759342313 : static inline struct zone *page_zone(const struct page *page)
844 : : {
845 : : return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
846 : : }
847 : :
848 : : #ifdef SECTION_IN_PAGE_FLAGS
849 : : static inline void set_page_section(struct page *page, unsigned long section)
850 : : {
851 : : page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
852 : : page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
853 : : }
854 : :
855 : : static inline unsigned long page_to_section(const struct page *page)
856 : : {
857 : : return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
858 : : }
859 : : #endif
860 : :
861 : : static inline void set_page_zone(struct page *page, enum zone_type zone)
862 : : {
863 : 0 : page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
864 : 0 : page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
865 : : }
866 : :
867 : : static inline void set_page_node(struct page *page, unsigned long node)
868 : : {
869 : : page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
870 : : page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
871 : : }
872 : :
873 : : static inline void set_page_links(struct page *page, enum zone_type zone,
874 : : unsigned long node, unsigned long pfn)
875 : : {
876 : : set_page_zone(page, zone);
877 : : set_page_node(page, node);
878 : : #ifdef SECTION_IN_PAGE_FLAGS
879 : : set_page_section(page, pfn_to_section_nr(pfn));
880 : : #endif
881 : : }
882 : :
883 : : /*
884 : : * Some inline functions in vmstat.h depend on page_zone()
885 : : */
886 : : #include <linux/vmstat.h>
887 : :
888 : : static __always_inline void *lowmem_page_address(const struct page *page)
889 : : {
890 : 227404888 : return __va(PFN_PHYS(page_to_pfn(page)));
891 : : }
892 : :
893 : : #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
894 : : #define HASHED_PAGE_VIRTUAL
895 : : #endif
896 : :
897 : : #if defined(WANT_PAGE_VIRTUAL)
898 : : static inline void *page_address(const struct page *page)
899 : : {
900 : : return page->virtual;
901 : : }
902 : : static inline void set_page_address(struct page *page, void *address)
903 : : {
904 : : page->virtual = address;
905 : : }
906 : : #define page_address_init() do { } while(0)
907 : : #endif
908 : :
909 : : #if defined(HASHED_PAGE_VIRTUAL)
910 : : void *page_address(const struct page *page);
911 : : void set_page_address(struct page *page, void *virtual);
912 : : void page_address_init(void);
913 : : #endif
914 : :
915 : : #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
916 : : #define page_address(page) lowmem_page_address(page)
917 : : #define set_page_address(page, address) do { } while(0)
918 : : #define page_address_init() do { } while(0)
919 : : #endif
920 : :
921 : : /*
922 : : * On an anonymous page mapped into a user virtual memory area,
923 : : * page->mapping points to its anon_vma, not to a struct address_space;
924 : : * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
925 : : *
926 : : * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
927 : : * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
928 : : * and then page->mapping points, not to an anon_vma, but to a private
929 : : * structure which KSM associates with that merged page. See ksm.h.
930 : : *
931 : : * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
932 : : *
933 : : * Please note that, confusingly, "page_mapping" refers to the inode
934 : : * address_space which maps the page from disk; whereas "page_mapped"
935 : : * refers to user virtual address space into which the page is mapped.
936 : : */
937 : : #define PAGE_MAPPING_ANON 1
938 : : #define PAGE_MAPPING_KSM 2
939 : : #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
940 : :
941 : : extern struct address_space *page_mapping(struct page *page);
942 : :
943 : : /* Neutral page->mapping pointer to address_space or anon_vma or other */
944 : : static inline void *page_rmapping(struct page *page)
945 : : {
946 : 0 : return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
947 : : }
948 : :
949 : : extern struct address_space *__page_file_mapping(struct page *);
950 : :
951 : : static inline
952 : : struct address_space *page_file_mapping(struct page *page)
953 : : {
954 [ # # ][ # # ]: 0 : if (unlikely(PageSwapCache(page)))
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # #
# # # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
955 : 0 : return __page_file_mapping(page);
956 : :
957 : 0 : return page->mapping;
958 : : }
959 : :
960 : : static inline int PageAnon(struct page *page)
961 : : {
962 : 255613031 : return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
963 : : }
964 : :
965 : : /*
966 : : * Return the pagecache index of the passed page. Regular pagecache pages
967 : : * use ->index whereas swapcache pages use ->private
968 : : */
969 : : static inline pgoff_t page_index(struct page *page)
970 : : {
971 [ - + ][ - + ]: 7980840 : if (unlikely(PageSwapCache(page)))
[ - + ][ - + ]
[ - + - + ]
[ # # ]
972 : 0 : return page_private(page);
973 : 5908086 : return page->index;
974 : : }
975 : :
976 : : extern pgoff_t __page_file_index(struct page *page);
977 : :
978 : : /*
979 : : * Return the file index of the page. Regular pagecache pages use ->index
980 : : * whereas swapcache pages use swp_offset(->private)
981 : : */
982 : : static inline pgoff_t page_file_index(struct page *page)
983 : : {
984 [ # # ][ # # ]: 0 : if (unlikely(PageSwapCache(page)))
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
985 : 0 : return __page_file_index(page);
986 : :
987 : 0 : return page->index;
988 : : }
989 : :
990 : : /*
991 : : * Return true if this page is mapped into pagetables.
992 : : */
993 : : static inline int page_mapped(struct page *page)
994 : : {
995 : 43561525 : return atomic_read(&(page)->_mapcount) >= 0;
996 : : }
997 : :
998 : : /*
999 : : * Different kinds of faults, as returned by handle_mm_fault().
1000 : : * Used to decide whether a process gets delivered SIGBUS or
1001 : : * just gets major/minor fault counters bumped up.
1002 : : */
1003 : :
1004 : : #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1005 : :
1006 : : #define VM_FAULT_OOM 0x0001
1007 : : #define VM_FAULT_SIGBUS 0x0002
1008 : : #define VM_FAULT_MAJOR 0x0004
1009 : : #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1010 : : #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1011 : : #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1012 : :
1013 : : #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1014 : : #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1015 : : #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1016 : : #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1017 : :
1018 : : #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1019 : :
1020 : : #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1021 : : VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1022 : :
1023 : : /* Encode hstate index for a hwpoisoned large page */
1024 : : #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1025 : : #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1026 : :
1027 : : /*
1028 : : * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1029 : : */
1030 : : extern void pagefault_out_of_memory(void);
1031 : :
1032 : : #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1033 : :
1034 : : /*
1035 : : * Flags passed to show_mem() and show_free_areas() to suppress output in
1036 : : * various contexts.
1037 : : */
1038 : : #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1039 : :
1040 : : extern void show_free_areas(unsigned int flags);
1041 : : extern bool skip_free_areas_node(unsigned int flags, int nid);
1042 : :
1043 : : void shmem_set_file(struct vm_area_struct *vma, struct file *file);
1044 : : int shmem_zero_setup(struct vm_area_struct *);
1045 : :
1046 : : extern int can_do_mlock(void);
1047 : : extern int user_shm_lock(size_t, struct user_struct *);
1048 : : extern void user_shm_unlock(size_t, struct user_struct *);
1049 : :
1050 : : /*
1051 : : * Parameter block passed down to zap_pte_range in exceptional cases.
1052 : : */
1053 : : struct zap_details {
1054 : : struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1055 : : struct address_space *check_mapping; /* Check page->mapping if set */
1056 : : pgoff_t first_index; /* Lowest page->index to unmap */
1057 : : pgoff_t last_index; /* Highest page->index to unmap */
1058 : : };
1059 : :
1060 : : struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1061 : : pte_t pte);
1062 : :
1063 : : int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1064 : : unsigned long size);
1065 : : void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1066 : : unsigned long size, struct zap_details *);
1067 : : void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1068 : : unsigned long start, unsigned long end);
1069 : :
1070 : : /**
1071 : : * mm_walk - callbacks for walk_page_range
1072 : : * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1073 : : * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1074 : : * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1075 : : * this handler is required to be able to handle
1076 : : * pmd_trans_huge() pmds. They may simply choose to
1077 : : * split_huge_page() instead of handling it explicitly.
1078 : : * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1079 : : * @pte_hole: if set, called for each hole at all levels
1080 : : * @hugetlb_entry: if set, called for each hugetlb entry
1081 : : * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1082 : : * is used.
1083 : : *
1084 : : * (see walk_page_range for more details)
1085 : : */
1086 : : struct mm_walk {
1087 : : int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1088 : : unsigned long next, struct mm_walk *walk);
1089 : : int (*pud_entry)(pud_t *pud, unsigned long addr,
1090 : : unsigned long next, struct mm_walk *walk);
1091 : : int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1092 : : unsigned long next, struct mm_walk *walk);
1093 : : int (*pte_entry)(pte_t *pte, unsigned long addr,
1094 : : unsigned long next, struct mm_walk *walk);
1095 : : int (*pte_hole)(unsigned long addr, unsigned long next,
1096 : : struct mm_walk *walk);
1097 : : int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1098 : : unsigned long addr, unsigned long next,
1099 : : struct mm_walk *walk);
1100 : : struct mm_struct *mm;
1101 : : void *private;
1102 : : };
1103 : :
1104 : : int walk_page_range(unsigned long addr, unsigned long end,
1105 : : struct mm_walk *walk);
1106 : : void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1107 : : unsigned long end, unsigned long floor, unsigned long ceiling);
1108 : : int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1109 : : struct vm_area_struct *vma);
1110 : : void unmap_mapping_range(struct address_space *mapping,
1111 : : loff_t const holebegin, loff_t const holelen, int even_cows);
1112 : : int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1113 : : unsigned long *pfn);
1114 : : int follow_phys(struct vm_area_struct *vma, unsigned long address,
1115 : : unsigned int flags, unsigned long *prot, resource_size_t *phys);
1116 : : int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1117 : : void *buf, int len, int write);
1118 : :
1119 : : static inline void unmap_shared_mapping_range(struct address_space *mapping,
1120 : : loff_t const holebegin, loff_t const holelen)
1121 : : {
1122 : : unmap_mapping_range(mapping, holebegin, holelen, 0);
1123 : : }
1124 : :
1125 : : extern void truncate_pagecache(struct inode *inode, loff_t new);
1126 : : extern void truncate_setsize(struct inode *inode, loff_t newsize);
1127 : : void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1128 : : int truncate_inode_page(struct address_space *mapping, struct page *page);
1129 : : int generic_error_remove_page(struct address_space *mapping, struct page *page);
1130 : : int invalidate_inode_page(struct page *page);
1131 : :
1132 : : #ifdef CONFIG_MMU
1133 : : extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1134 : : unsigned long address, unsigned int flags);
1135 : : extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1136 : : unsigned long address, unsigned int fault_flags);
1137 : : #else
1138 : : static inline int handle_mm_fault(struct mm_struct *mm,
1139 : : struct vm_area_struct *vma, unsigned long address,
1140 : : unsigned int flags)
1141 : : {
1142 : : /* should never happen if there's no MMU */
1143 : : BUG();
1144 : : return VM_FAULT_SIGBUS;
1145 : : }
1146 : : static inline int fixup_user_fault(struct task_struct *tsk,
1147 : : struct mm_struct *mm, unsigned long address,
1148 : : unsigned int fault_flags)
1149 : : {
1150 : : /* should never happen if there's no MMU */
1151 : : BUG();
1152 : : return -EFAULT;
1153 : : }
1154 : : #endif
1155 : :
1156 : : extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1157 : : extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1158 : : void *buf, int len, int write);
1159 : :
1160 : : long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1161 : : unsigned long start, unsigned long nr_pages,
1162 : : unsigned int foll_flags, struct page **pages,
1163 : : struct vm_area_struct **vmas, int *nonblocking);
1164 : : long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1165 : : unsigned long start, unsigned long nr_pages,
1166 : : int write, int force, struct page **pages,
1167 : : struct vm_area_struct **vmas);
1168 : : int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1169 : : struct page **pages);
1170 : : struct kvec;
1171 : : int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1172 : : struct page **pages);
1173 : : int get_kernel_page(unsigned long start, int write, struct page **pages);
1174 : : struct page *get_dump_page(unsigned long addr);
1175 : :
1176 : : extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1177 : : extern void do_invalidatepage(struct page *page, unsigned int offset,
1178 : : unsigned int length);
1179 : :
1180 : : int __set_page_dirty_nobuffers(struct page *page);
1181 : : int __set_page_dirty_no_writeback(struct page *page);
1182 : : int redirty_page_for_writepage(struct writeback_control *wbc,
1183 : : struct page *page);
1184 : : void account_page_dirtied(struct page *page, struct address_space *mapping);
1185 : : void account_page_writeback(struct page *page);
1186 : : int set_page_dirty(struct page *page);
1187 : : int set_page_dirty_lock(struct page *page);
1188 : : int clear_page_dirty_for_io(struct page *page);
1189 : :
1190 : : /* Is the vma a continuation of the stack vma above it? */
1191 : : static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1192 : : {
1193 [ + - ][ + + ]: 239 : return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
[ - + ]
1194 : : }
1195 : :
1196 : : static inline int stack_guard_page_start(struct vm_area_struct *vma,
1197 : : unsigned long addr)
1198 : : {
1199 [ + + ]: 881922 : return (vma->vm_flags & VM_GROWSDOWN) &&
1200 [ + + ][ + + ]: 940470 : (vma->vm_start == addr) &&
1201 : 239 : !vma_growsdown(vma->vm_prev, addr);
1202 : : }
1203 : :
1204 : : /* Is the vma a continuation of the stack vma below it? */
1205 : : static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1206 : : {
1207 : : return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1208 : : }
1209 : :
1210 : : static inline int stack_guard_page_end(struct vm_area_struct *vma,
1211 : : unsigned long addr)
1212 : : {
1213 : : return (vma->vm_flags & VM_GROWSUP) &&
1214 : : (vma->vm_end == addr) &&
1215 : : !vma_growsup(vma->vm_next, addr);
1216 : : }
1217 : :
1218 : : extern pid_t
1219 : : vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1220 : :
1221 : : extern unsigned long move_page_tables(struct vm_area_struct *vma,
1222 : : unsigned long old_addr, struct vm_area_struct *new_vma,
1223 : : unsigned long new_addr, unsigned long len,
1224 : : bool need_rmap_locks);
1225 : : extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1226 : : unsigned long end, pgprot_t newprot,
1227 : : int dirty_accountable, int prot_numa);
1228 : : extern int mprotect_fixup(struct vm_area_struct *vma,
1229 : : struct vm_area_struct **pprev, unsigned long start,
1230 : : unsigned long end, unsigned long newflags);
1231 : :
1232 : : /*
1233 : : * doesn't attempt to fault and will return short.
1234 : : */
1235 : : int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1236 : : struct page **pages);
1237 : : /*
1238 : : * per-process(per-mm_struct) statistics.
1239 : : */
1240 : : static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1241 : : {
1242 : : long val = atomic_long_read(&mm->rss_stat.count[member]);
1243 : :
1244 : : #ifdef SPLIT_RSS_COUNTING
1245 : : /*
1246 : : * counter is updated in asynchronous manner and may go to minus.
1247 : : * But it's never be expected number for users.
1248 : : */
1249 [ + + ][ - + ]: 2880629 : if (val < 0)
[ + + ][ - + ]
[ # # ][ + + ]
[ - + ][ + + ]
[ - + ][ + + ]
[ + + ][ - + ]
[ - + ]
1250 : : val = 0;
1251 : : #endif
1252 : 5751132 : return (unsigned long)val;
1253 : : }
1254 : :
1255 : : static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1256 : : {
1257 : 32804878 : atomic_long_add(value, &mm->rss_stat.count[member]);
1258 : : }
1259 : :
1260 : : static inline void inc_mm_counter(struct mm_struct *mm, int member)
1261 : : {
1262 : 0 : atomic_long_inc(&mm->rss_stat.count[member]);
1263 : : }
1264 : :
1265 : : static inline void dec_mm_counter(struct mm_struct *mm, int member)
1266 : : {
1267 : 5279 : atomic_long_dec(&mm->rss_stat.count[member]);
1268 : : }
1269 : :
1270 : : static inline unsigned long get_mm_rss(struct mm_struct *mm)
1271 : : {
1272 : 2872739 : return get_mm_counter(mm, MM_FILEPAGES) +
1273 : : get_mm_counter(mm, MM_ANONPAGES);
1274 : : }
1275 : :
1276 : : static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1277 : : {
1278 : 2541434 : return max(mm->hiwater_rss, get_mm_rss(mm));
1279 : : }
1280 : :
1281 : : static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1282 : : {
1283 : : return max(mm->hiwater_vm, mm->total_vm);
1284 : : }
1285 : :
1286 : : static inline void update_hiwater_rss(struct mm_struct *mm)
1287 : : {
1288 : : unsigned long _rss = get_mm_rss(mm);
1289 : :
1290 [ + + ][ + + ]: 478597 : if ((mm)->hiwater_rss < _rss)
1291 : 223674 : (mm)->hiwater_rss = _rss;
1292 : : }
1293 : :
1294 : : static inline void update_hiwater_vm(struct mm_struct *mm)
1295 : : {
1296 [ + + ]: 408333 : if (mm->hiwater_vm < mm->total_vm)
1297 : 408333 : mm->hiwater_vm = mm->total_vm;
1298 : : }
1299 : :
1300 : : static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1301 : : struct mm_struct *mm)
1302 : : {
1303 : : unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1304 : :
1305 [ + + ]: 1270717 : if (*maxrss < hiwater_rss)
1306 : 1124751 : *maxrss = hiwater_rss;
1307 : : }
1308 : :
1309 : : #if defined(SPLIT_RSS_COUNTING)
1310 : : void sync_mm_rss(struct mm_struct *mm);
1311 : : #else
1312 : : static inline void sync_mm_rss(struct mm_struct *mm)
1313 : : {
1314 : : }
1315 : : #endif
1316 : :
1317 : : int vma_wants_writenotify(struct vm_area_struct *vma);
1318 : :
1319 : : extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1320 : : spinlock_t **ptl);
1321 : : static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1322 : : spinlock_t **ptl)
1323 : : {
1324 : : pte_t *ptep;
1325 : 1111 : __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1326 : : return ptep;
1327 : : }
1328 : :
1329 : : #ifdef __PAGETABLE_PUD_FOLDED
1330 : : static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1331 : : unsigned long address)
1332 : : {
1333 : : return 0;
1334 : : }
1335 : : #else
1336 : : int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1337 : : #endif
1338 : :
1339 : : #ifdef __PAGETABLE_PMD_FOLDED
1340 : : static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1341 : : unsigned long address)
1342 : : {
1343 : : return 0;
1344 : : }
1345 : : #else
1346 : : int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1347 : : #endif
1348 : :
1349 : : int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1350 : : pmd_t *pmd, unsigned long address);
1351 : : int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1352 : :
1353 : : /*
1354 : : * The following ifdef needed to get the 4level-fixup.h header to work.
1355 : : * Remove it when 4level-fixup.h has been removed.
1356 : : */
1357 : : #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1358 : : static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1359 : : {
1360 : : return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1361 : : NULL: pud_offset(pgd, address);
1362 : : }
1363 : :
1364 : : static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1365 : : {
1366 : : return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1367 : : NULL: pmd_offset(pud, address);
1368 : : }
1369 : : #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1370 : :
1371 : : #if USE_SPLIT_PTE_PTLOCKS
1372 : : #if ALLOC_SPLIT_PTLOCKS
1373 : : void __init ptlock_cache_init(void);
1374 : : extern bool ptlock_alloc(struct page *page);
1375 : : extern void ptlock_free(struct page *page);
1376 : :
1377 : : static inline spinlock_t *ptlock_ptr(struct page *page)
1378 : : {
1379 : : return page->ptl;
1380 : : }
1381 : : #else /* ALLOC_SPLIT_PTLOCKS */
1382 : : static inline void ptlock_cache_init(void)
1383 : : {
1384 : : }
1385 : :
1386 : : static inline bool ptlock_alloc(struct page *page)
1387 : : {
1388 : : return true;
1389 : : }
1390 : :
1391 : : static inline void ptlock_free(struct page *page)
1392 : : {
1393 : : }
1394 : :
1395 : : static inline spinlock_t *ptlock_ptr(struct page *page)
1396 : : {
1397 : : return &page->ptl;
1398 : : }
1399 : : #endif /* ALLOC_SPLIT_PTLOCKS */
1400 : :
1401 : : static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1402 : : {
1403 : 125446347 : return ptlock_ptr(pmd_page(*pmd));
1404 : : }
1405 : :
1406 : : static inline bool ptlock_init(struct page *page)
1407 : : {
1408 : : /*
1409 : : * prep_new_page() initialize page->private (and therefore page->ptl)
1410 : : * with 0. Make sure nobody took it in use in between.
1411 : : *
1412 : : * It can happen if arch try to use slab for page table allocation:
1413 : : * slab code uses page->slab_cache and page->first_page (for tail
1414 : : * pages), which share storage with page->ptl.
1415 : : */
1416 : : VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1417 : : if (!ptlock_alloc(page))
1418 : : return false;
1419 : 3620775 : spin_lock_init(ptlock_ptr(page));
1420 : : return true;
1421 : : }
1422 : :
1423 : : /* Reset page->mapping so free_pages_check won't complain. */
1424 : : static inline void pte_lock_deinit(struct page *page)
1425 : : {
1426 : 3620774 : page->mapping = NULL;
1427 : : ptlock_free(page);
1428 : : }
1429 : :
1430 : : #else /* !USE_SPLIT_PTE_PTLOCKS */
1431 : : /*
1432 : : * We use mm->page_table_lock to guard all pagetable pages of the mm.
1433 : : */
1434 : : static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1435 : : {
1436 : : return &mm->page_table_lock;
1437 : : }
1438 : : static inline void ptlock_cache_init(void) {}
1439 : : static inline bool ptlock_init(struct page *page) { return true; }
1440 : : static inline void pte_lock_deinit(struct page *page) {}
1441 : : #endif /* USE_SPLIT_PTE_PTLOCKS */
1442 : :
1443 : : static inline void pgtable_init(void)
1444 : : {
1445 : : ptlock_cache_init();
1446 : : pgtable_cache_init();
1447 : : }
1448 : :
1449 : : static inline bool pgtable_page_ctor(struct page *page)
1450 : : {
1451 : 3620753 : inc_zone_page_state(page, NR_PAGETABLE);
1452 : : return ptlock_init(page);
1453 : : }
1454 : :
1455 : : static inline void pgtable_page_dtor(struct page *page)
1456 : : {
1457 : : pte_lock_deinit(page);
1458 : 3620774 : dec_zone_page_state(page, NR_PAGETABLE);
1459 : : }
1460 : :
1461 : : #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1462 : : ({ \
1463 : : spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1464 : : pte_t *__pte = pte_offset_map(pmd, address); \
1465 : : *(ptlp) = __ptl; \
1466 : : spin_lock(__ptl); \
1467 : : __pte; \
1468 : : })
1469 : :
1470 : : #define pte_unmap_unlock(pte, ptl) do { \
1471 : : spin_unlock(ptl); \
1472 : : pte_unmap(pte); \
1473 : : } while (0)
1474 : :
1475 : : #define pte_alloc_map(mm, vma, pmd, address) \
1476 : : ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1477 : : pmd, address))? \
1478 : : NULL: pte_offset_map(pmd, address))
1479 : :
1480 : : #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1481 : : ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1482 : : pmd, address))? \
1483 : : NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1484 : :
1485 : : #define pte_alloc_kernel(pmd, address) \
1486 : : ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1487 : : NULL: pte_offset_kernel(pmd, address))
1488 : :
1489 : : #if USE_SPLIT_PMD_PTLOCKS
1490 : :
1491 : : static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1492 : : {
1493 : : return ptlock_ptr(virt_to_page(pmd));
1494 : : }
1495 : :
1496 : : static inline bool pgtable_pmd_page_ctor(struct page *page)
1497 : : {
1498 : : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1499 : : page->pmd_huge_pte = NULL;
1500 : : #endif
1501 : : return ptlock_init(page);
1502 : : }
1503 : :
1504 : : static inline void pgtable_pmd_page_dtor(struct page *page)
1505 : : {
1506 : : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1507 : : VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1508 : : #endif
1509 : : ptlock_free(page);
1510 : : }
1511 : :
1512 : : #define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte)
1513 : :
1514 : : #else
1515 : :
1516 : : static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1517 : : {
1518 : : return &mm->page_table_lock;
1519 : : }
1520 : :
1521 : : static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1522 : : static inline void pgtable_pmd_page_dtor(struct page *page) {}
1523 : :
1524 : : #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1525 : :
1526 : : #endif
1527 : :
1528 : : static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1529 : : {
1530 : : spinlock_t *ptl = pmd_lockptr(mm, pmd);
1531 : : spin_lock(ptl);
1532 : : return ptl;
1533 : : }
1534 : :
1535 : : extern void free_area_init(unsigned long * zones_size);
1536 : : extern void free_area_init_node(int nid, unsigned long * zones_size,
1537 : : unsigned long zone_start_pfn, unsigned long *zholes_size);
1538 : : extern void free_initmem(void);
1539 : :
1540 : : /*
1541 : : * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1542 : : * into the buddy system. The freed pages will be poisoned with pattern
1543 : : * "poison" if it's within range [0, UCHAR_MAX].
1544 : : * Return pages freed into the buddy system.
1545 : : */
1546 : : extern unsigned long free_reserved_area(void *start, void *end,
1547 : : int poison, char *s);
1548 : :
1549 : : #ifdef CONFIG_HIGHMEM
1550 : : /*
1551 : : * Free a highmem page into the buddy system, adjusting totalhigh_pages
1552 : : * and totalram_pages.
1553 : : */
1554 : : extern void free_highmem_page(struct page *page);
1555 : : #endif
1556 : :
1557 : : extern void adjust_managed_page_count(struct page *page, long count);
1558 : : extern void mem_init_print_info(const char *str);
1559 : :
1560 : : /* Free the reserved page into the buddy system, so it gets managed. */
1561 : : static inline void __free_reserved_page(struct page *page)
1562 : : {
1563 : : ClearPageReserved(page);
1564 : : init_page_count(page);
1565 : 0 : __free_page(page);
1566 : : }
1567 : :
1568 : : static inline void free_reserved_page(struct page *page)
1569 : : {
1570 : : __free_reserved_page(page);
1571 : 0 : adjust_managed_page_count(page, 1);
1572 : : }
1573 : :
1574 : : static inline void mark_page_reserved(struct page *page)
1575 : : {
1576 : : SetPageReserved(page);
1577 : : adjust_managed_page_count(page, -1);
1578 : : }
1579 : :
1580 : : /*
1581 : : * Default method to free all the __init memory into the buddy system.
1582 : : * The freed pages will be poisoned with pattern "poison" if it's within
1583 : : * range [0, UCHAR_MAX].
1584 : : * Return pages freed into the buddy system.
1585 : : */
1586 : : static inline unsigned long free_initmem_default(int poison)
1587 : : {
1588 : : extern char __init_begin[], __init_end[];
1589 : :
1590 : 0 : return free_reserved_area(&__init_begin, &__init_end,
1591 : : poison, "unused kernel");
1592 : : }
1593 : :
1594 : : static inline unsigned long get_num_physpages(void)
1595 : : {
1596 : : int nid;
1597 : : unsigned long phys_pages = 0;
1598 : :
1599 [ # # ]: 0 : for_each_online_node(nid)
1600 : 0 : phys_pages += node_present_pages(nid);
1601 : :
1602 : : return phys_pages;
1603 : : }
1604 : :
1605 : : #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1606 : : /*
1607 : : * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1608 : : * zones, allocate the backing mem_map and account for memory holes in a more
1609 : : * architecture independent manner. This is a substitute for creating the
1610 : : * zone_sizes[] and zholes_size[] arrays and passing them to
1611 : : * free_area_init_node()
1612 : : *
1613 : : * An architecture is expected to register range of page frames backed by
1614 : : * physical memory with memblock_add[_node]() before calling
1615 : : * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1616 : : * usage, an architecture is expected to do something like
1617 : : *
1618 : : * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1619 : : * max_highmem_pfn};
1620 : : * for_each_valid_physical_page_range()
1621 : : * memblock_add_node(base, size, nid)
1622 : : * free_area_init_nodes(max_zone_pfns);
1623 : : *
1624 : : * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1625 : : * registered physical page range. Similarly
1626 : : * sparse_memory_present_with_active_regions() calls memory_present() for
1627 : : * each range when SPARSEMEM is enabled.
1628 : : *
1629 : : * See mm/page_alloc.c for more information on each function exposed by
1630 : : * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1631 : : */
1632 : : extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1633 : : unsigned long node_map_pfn_alignment(void);
1634 : : unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1635 : : unsigned long end_pfn);
1636 : : extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1637 : : unsigned long end_pfn);
1638 : : extern void get_pfn_range_for_nid(unsigned int nid,
1639 : : unsigned long *start_pfn, unsigned long *end_pfn);
1640 : : extern unsigned long find_min_pfn_with_active_regions(void);
1641 : : extern void free_bootmem_with_active_regions(int nid,
1642 : : unsigned long max_low_pfn);
1643 : : extern void sparse_memory_present_with_active_regions(int nid);
1644 : :
1645 : : #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1646 : :
1647 : : #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1648 : : !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1649 : : static inline int __early_pfn_to_nid(unsigned long pfn)
1650 : : {
1651 : : return 0;
1652 : : }
1653 : : #else
1654 : : /* please see mm/page_alloc.c */
1655 : : extern int __meminit early_pfn_to_nid(unsigned long pfn);
1656 : : #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1657 : : /* there is a per-arch backend function. */
1658 : : extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1659 : : #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1660 : : #endif
1661 : :
1662 : : extern void set_dma_reserve(unsigned long new_dma_reserve);
1663 : : extern void memmap_init_zone(unsigned long, int, unsigned long,
1664 : : unsigned long, enum memmap_context);
1665 : : extern void setup_per_zone_wmarks(void);
1666 : : extern int __meminit init_per_zone_wmark_min(void);
1667 : : extern void mem_init(void);
1668 : : extern void __init mmap_init(void);
1669 : : extern void show_mem(unsigned int flags);
1670 : : extern void si_meminfo(struct sysinfo * val);
1671 : : extern void si_meminfo_node(struct sysinfo *val, int nid);
1672 : :
1673 : : extern __printf(3, 4)
1674 : : void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1675 : :
1676 : : extern void setup_per_cpu_pageset(void);
1677 : :
1678 : : extern void zone_pcp_update(struct zone *zone);
1679 : : extern void zone_pcp_reset(struct zone *zone);
1680 : :
1681 : : /* page_alloc.c */
1682 : : extern int min_free_kbytes;
1683 : :
1684 : : /* nommu.c */
1685 : : extern atomic_long_t mmap_pages_allocated;
1686 : : extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1687 : :
1688 : : /* interval_tree.c */
1689 : : void vma_interval_tree_insert(struct vm_area_struct *node,
1690 : : struct rb_root *root);
1691 : : void vma_interval_tree_insert_after(struct vm_area_struct *node,
1692 : : struct vm_area_struct *prev,
1693 : : struct rb_root *root);
1694 : : void vma_interval_tree_remove(struct vm_area_struct *node,
1695 : : struct rb_root *root);
1696 : : struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1697 : : unsigned long start, unsigned long last);
1698 : : struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1699 : : unsigned long start, unsigned long last);
1700 : :
1701 : : #define vma_interval_tree_foreach(vma, root, start, last) \
1702 : : for (vma = vma_interval_tree_iter_first(root, start, last); \
1703 : : vma; vma = vma_interval_tree_iter_next(vma, start, last))
1704 : :
1705 : : static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1706 : : struct list_head *list)
1707 : : {
1708 : 1 : list_add_tail(&vma->shared.nonlinear, list);
1709 : : }
1710 : :
1711 : : void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1712 : : struct rb_root *root);
1713 : : void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1714 : : struct rb_root *root);
1715 : : struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1716 : : struct rb_root *root, unsigned long start, unsigned long last);
1717 : : struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1718 : : struct anon_vma_chain *node, unsigned long start, unsigned long last);
1719 : : #ifdef CONFIG_DEBUG_VM_RB
1720 : : void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1721 : : #endif
1722 : :
1723 : : #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1724 : : for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1725 : : avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1726 : :
1727 : : /* mmap.c */
1728 : : extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1729 : : extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1730 : : unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1731 : : extern struct vm_area_struct *vma_merge(struct mm_struct *,
1732 : : struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1733 : : unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1734 : : struct mempolicy *, const char __user *);
1735 : : extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1736 : : extern int split_vma(struct mm_struct *,
1737 : : struct vm_area_struct *, unsigned long addr, int new_below);
1738 : : extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1739 : : extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1740 : : struct rb_node **, struct rb_node *);
1741 : : extern void unlink_file_vma(struct vm_area_struct *);
1742 : : extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1743 : : unsigned long addr, unsigned long len, pgoff_t pgoff,
1744 : : bool *need_rmap_locks);
1745 : : extern void exit_mmap(struct mm_struct *);
1746 : :
1747 : : extern int mm_take_all_locks(struct mm_struct *mm);
1748 : : extern void mm_drop_all_locks(struct mm_struct *mm);
1749 : :
1750 : : extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1751 : : extern struct file *get_mm_exe_file(struct mm_struct *mm);
1752 : :
1753 : : extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1754 : : extern int install_special_mapping(struct mm_struct *mm,
1755 : : unsigned long addr, unsigned long len,
1756 : : unsigned long flags, struct page **pages);
1757 : :
1758 : : extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1759 : :
1760 : : extern unsigned long mmap_region(struct file *file, unsigned long addr,
1761 : : unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1762 : : extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1763 : : unsigned long len, unsigned long prot, unsigned long flags,
1764 : : unsigned long pgoff, unsigned long *populate);
1765 : : extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1766 : :
1767 : : #ifdef CONFIG_MMU
1768 : : extern int __mm_populate(unsigned long addr, unsigned long len,
1769 : : int ignore_errors);
1770 : : static inline void mm_populate(unsigned long addr, unsigned long len)
1771 : : {
1772 : : /* Ignore errors */
1773 : 34958 : (void) __mm_populate(addr, len, 1);
1774 : : }
1775 : : #else
1776 : : static inline void mm_populate(unsigned long addr, unsigned long len) {}
1777 : : #endif
1778 : :
1779 : : /* These take the mm semaphore themselves */
1780 : : extern unsigned long vm_brk(unsigned long, unsigned long);
1781 : : extern int vm_munmap(unsigned long, size_t);
1782 : : extern unsigned long vm_mmap(struct file *, unsigned long,
1783 : : unsigned long, unsigned long,
1784 : : unsigned long, unsigned long);
1785 : :
1786 : : struct vm_unmapped_area_info {
1787 : : #define VM_UNMAPPED_AREA_TOPDOWN 1
1788 : : unsigned long flags;
1789 : : unsigned long length;
1790 : : unsigned long low_limit;
1791 : : unsigned long high_limit;
1792 : : unsigned long align_mask;
1793 : : unsigned long align_offset;
1794 : : };
1795 : :
1796 : : extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1797 : : extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1798 : :
1799 : : /*
1800 : : * Search for an unmapped address range.
1801 : : *
1802 : : * We are looking for a range that:
1803 : : * - does not intersect with any VMA;
1804 : : * - is contained within the [low_limit, high_limit) interval;
1805 : : * - is at least the desired size.
1806 : : * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1807 : : */
1808 : : static inline unsigned long
1809 : : vm_unmapped_area(struct vm_unmapped_area_info *info)
1810 : : {
1811 : : if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1812 : 34448 : return unmapped_area(info);
1813 : : else
1814 : 1608338 : return unmapped_area_topdown(info);
1815 : : }
1816 : :
1817 : : /* truncate.c */
1818 : : extern void truncate_inode_pages(struct address_space *, loff_t);
1819 : : extern void truncate_inode_pages_range(struct address_space *,
1820 : : loff_t lstart, loff_t lend);
1821 : :
1822 : : /* generic vm_area_ops exported for stackable file systems */
1823 : : extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1824 : : extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1825 : :
1826 : : /* mm/page-writeback.c */
1827 : : int write_one_page(struct page *page, int wait);
1828 : : void task_dirty_inc(struct task_struct *tsk);
1829 : :
1830 : : /* readahead.c */
1831 : : #define VM_MAX_READAHEAD 128 /* kbytes */
1832 : : #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1833 : :
1834 : : int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1835 : : pgoff_t offset, unsigned long nr_to_read);
1836 : :
1837 : : void page_cache_sync_readahead(struct address_space *mapping,
1838 : : struct file_ra_state *ra,
1839 : : struct file *filp,
1840 : : pgoff_t offset,
1841 : : unsigned long size);
1842 : :
1843 : : void page_cache_async_readahead(struct address_space *mapping,
1844 : : struct file_ra_state *ra,
1845 : : struct file *filp,
1846 : : struct page *pg,
1847 : : pgoff_t offset,
1848 : : unsigned long size);
1849 : :
1850 : : unsigned long max_sane_readahead(unsigned long nr);
1851 : : unsigned long ra_submit(struct file_ra_state *ra,
1852 : : struct address_space *mapping,
1853 : : struct file *filp);
1854 : :
1855 : : /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1856 : : extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1857 : :
1858 : : /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1859 : : extern int expand_downwards(struct vm_area_struct *vma,
1860 : : unsigned long address);
1861 : : #if VM_GROWSUP
1862 : : extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1863 : : #else
1864 : : #define expand_upwards(vma, address) do { } while (0)
1865 : : #endif
1866 : :
1867 : : /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1868 : : extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1869 : : extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1870 : : struct vm_area_struct **pprev);
1871 : :
1872 : : /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1873 : : NULL if none. Assume start_addr < end_addr. */
1874 : : static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1875 : : {
1876 : 36078 : struct vm_area_struct * vma = find_vma(mm,start_addr);
1877 : :
1878 [ + - ][ + - ]: 36078 : if (vma && end_addr <= vma->vm_start)
[ + - ][ + + ]
1879 : : vma = NULL;
1880 : : return vma;
1881 : : }
1882 : :
1883 : : static inline unsigned long vma_pages(struct vm_area_struct *vma)
1884 : : {
1885 : 25389332 : return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1886 : : }
1887 : :
1888 : : /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1889 : : static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1890 : : unsigned long vm_start, unsigned long vm_end)
1891 : : {
1892 : : struct vm_area_struct *vma = find_vma(mm, vm_start);
1893 : :
1894 : : if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1895 : : vma = NULL;
1896 : :
1897 : : return vma;
1898 : : }
1899 : :
1900 : : #ifdef CONFIG_MMU
1901 : : pgprot_t vm_get_page_prot(unsigned long vm_flags);
1902 : : #else
1903 : : static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1904 : : {
1905 : : return __pgprot(0);
1906 : : }
1907 : : #endif
1908 : :
1909 : : #ifdef CONFIG_NUMA_BALANCING
1910 : : unsigned long change_prot_numa(struct vm_area_struct *vma,
1911 : : unsigned long start, unsigned long end);
1912 : : #endif
1913 : :
1914 : : struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1915 : : int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1916 : : unsigned long pfn, unsigned long size, pgprot_t);
1917 : : int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1918 : : int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1919 : : unsigned long pfn);
1920 : : int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1921 : : unsigned long pfn);
1922 : : int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1923 : :
1924 : :
1925 : : struct page *follow_page_mask(struct vm_area_struct *vma,
1926 : : unsigned long address, unsigned int foll_flags,
1927 : : unsigned int *page_mask);
1928 : :
1929 : : static inline struct page *follow_page(struct vm_area_struct *vma,
1930 : : unsigned long address, unsigned int foll_flags)
1931 : : {
1932 : : unsigned int unused_page_mask;
1933 : : return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1934 : : }
1935 : :
1936 : : #define FOLL_WRITE 0x01 /* check pte is writable */
1937 : : #define FOLL_TOUCH 0x02 /* mark page accessed */
1938 : : #define FOLL_GET 0x04 /* do get_page on page */
1939 : : #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1940 : : #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1941 : : #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1942 : : * and return without waiting upon it */
1943 : : #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1944 : : #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1945 : : #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1946 : : #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1947 : : #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1948 : :
1949 : : typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1950 : : void *data);
1951 : : extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1952 : : unsigned long size, pte_fn_t fn, void *data);
1953 : :
1954 : : #ifdef CONFIG_PROC_FS
1955 : : void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1956 : : #else
1957 : : static inline void vm_stat_account(struct mm_struct *mm,
1958 : : unsigned long flags, struct file *file, long pages)
1959 : : {
1960 : : mm->total_vm += pages;
1961 : : }
1962 : : #endif /* CONFIG_PROC_FS */
1963 : :
1964 : : #ifdef CONFIG_DEBUG_PAGEALLOC
1965 : : extern void kernel_map_pages(struct page *page, int numpages, int enable);
1966 : : #ifdef CONFIG_HIBERNATION
1967 : : extern bool kernel_page_present(struct page *page);
1968 : : #endif /* CONFIG_HIBERNATION */
1969 : : #else
1970 : : static inline void
1971 : : kernel_map_pages(struct page *page, int numpages, int enable) {}
1972 : : #ifdef CONFIG_HIBERNATION
1973 : : static inline bool kernel_page_present(struct page *page) { return true; }
1974 : : #endif /* CONFIG_HIBERNATION */
1975 : : #endif
1976 : :
1977 : : extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1978 : : #ifdef __HAVE_ARCH_GATE_AREA
1979 : : int in_gate_area_no_mm(unsigned long addr);
1980 : : int in_gate_area(struct mm_struct *mm, unsigned long addr);
1981 : : #else
1982 : : int in_gate_area_no_mm(unsigned long addr);
1983 : : #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1984 : : #endif /* __HAVE_ARCH_GATE_AREA */
1985 : :
1986 : : #ifdef CONFIG_SYSCTL
1987 : : extern int sysctl_drop_caches;
1988 : : int drop_caches_sysctl_handler(struct ctl_table *, int,
1989 : : void __user *, size_t *, loff_t *);
1990 : : #endif
1991 : :
1992 : : unsigned long shrink_slab(struct shrink_control *shrink,
1993 : : unsigned long nr_pages_scanned,
1994 : : unsigned long lru_pages);
1995 : :
1996 : : #ifndef CONFIG_MMU
1997 : : #define randomize_va_space 0
1998 : : #else
1999 : : extern int randomize_va_space;
2000 : : #endif
2001 : :
2002 : : const char * arch_vma_name(struct vm_area_struct *vma);
2003 : : void print_vma_addr(char *prefix, unsigned long rip);
2004 : :
2005 : : void sparse_mem_maps_populate_node(struct page **map_map,
2006 : : unsigned long pnum_begin,
2007 : : unsigned long pnum_end,
2008 : : unsigned long map_count,
2009 : : int nodeid);
2010 : :
2011 : : struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2012 : : pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2013 : : pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2014 : : pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2015 : : pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2016 : : void *vmemmap_alloc_block(unsigned long size, int node);
2017 : : void *vmemmap_alloc_block_buf(unsigned long size, int node);
2018 : : void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2019 : : int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2020 : : int node);
2021 : : int vmemmap_populate(unsigned long start, unsigned long end, int node);
2022 : : void vmemmap_populate_print_last(void);
2023 : : #ifdef CONFIG_MEMORY_HOTPLUG
2024 : : void vmemmap_free(unsigned long start, unsigned long end);
2025 : : #endif
2026 : : void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2027 : : unsigned long size);
2028 : :
2029 : : enum mf_flags {
2030 : : MF_COUNT_INCREASED = 1 << 0,
2031 : : MF_ACTION_REQUIRED = 1 << 1,
2032 : : MF_MUST_KILL = 1 << 2,
2033 : : MF_SOFT_OFFLINE = 1 << 3,
2034 : : };
2035 : : extern int memory_failure(unsigned long pfn, int trapno, int flags);
2036 : : extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2037 : : extern int unpoison_memory(unsigned long pfn);
2038 : : extern int sysctl_memory_failure_early_kill;
2039 : : extern int sysctl_memory_failure_recovery;
2040 : : extern void shake_page(struct page *p, int access);
2041 : : extern atomic_long_t num_poisoned_pages;
2042 : : extern int soft_offline_page(struct page *page, int flags);
2043 : :
2044 : : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2045 : : extern void clear_huge_page(struct page *page,
2046 : : unsigned long addr,
2047 : : unsigned int pages_per_huge_page);
2048 : : extern void copy_user_huge_page(struct page *dst, struct page *src,
2049 : : unsigned long addr, struct vm_area_struct *vma,
2050 : : unsigned int pages_per_huge_page);
2051 : : #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2052 : :
2053 : : #ifdef CONFIG_DEBUG_PAGEALLOC
2054 : : extern unsigned int _debug_guardpage_minorder;
2055 : :
2056 : : static inline unsigned int debug_guardpage_minorder(void)
2057 : : {
2058 : : return _debug_guardpage_minorder;
2059 : : }
2060 : :
2061 : : static inline bool page_is_guard(struct page *page)
2062 : : {
2063 : : return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2064 : : }
2065 : : #else
2066 : : static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2067 : : static inline bool page_is_guard(struct page *page) { return false; }
2068 : : #endif /* CONFIG_DEBUG_PAGEALLOC */
2069 : :
2070 : : #if MAX_NUMNODES > 1
2071 : : void __init setup_nr_node_ids(void);
2072 : : #else
2073 : : static inline void setup_nr_node_ids(void) {}
2074 : : #endif
2075 : :
2076 : : #endif /* __KERNEL__ */
2077 : : #endif /* _LINUX_MM_H */
|