Branch data Line data Source code
1 : : #include <linux/module.h>
2 : : #include <linux/string.h>
3 : : #include <linux/bitops.h>
4 : : #include <linux/slab.h>
5 : : #include <linux/log2.h>
6 : : #include <linux/usb.h>
7 : : #include <linux/wait.h>
8 : : #include <linux/usb/hcd.h>
9 : : #include <linux/scatterlist.h>
10 : :
11 : : #define to_urb(d) container_of(d, struct urb, kref)
12 : :
13 : :
14 : 0 : static void urb_destroy(struct kref *kref)
15 : : {
16 : : struct urb *urb = to_urb(kref);
17 : :
18 [ - + ]: 1305421 : if (urb->transfer_flags & URB_FREE_BUFFER)
19 : 0 : kfree(urb->transfer_buffer);
20 : :
21 : 1305421 : kfree(urb);
22 : 1305421 : }
23 : :
24 : : /**
25 : : * usb_init_urb - initializes a urb so that it can be used by a USB driver
26 : : * @urb: pointer to the urb to initialize
27 : : *
28 : : * Initializes a urb so that the USB subsystem can use it properly.
29 : : *
30 : : * If a urb is created with a call to usb_alloc_urb() it is not
31 : : * necessary to call this function. Only use this if you allocate the
32 : : * space for a struct urb on your own. If you call this function, be
33 : : * careful when freeing the memory for your urb that it is no longer in
34 : : * use by the USB core.
35 : : *
36 : : * Only use this function if you _really_ understand what you are doing.
37 : : */
38 : 0 : void usb_init_urb(struct urb *urb)
39 : : {
40 [ + - ][ # # ]: 1305421 : if (urb) {
41 : 1305421 : memset(urb, 0, sizeof(*urb));
42 : : kref_init(&urb->kref);
43 : 1305421 : INIT_LIST_HEAD(&urb->anchor_list);
44 : : }
45 : 0 : }
46 : : EXPORT_SYMBOL_GPL(usb_init_urb);
47 : :
48 : : /**
49 : : * usb_alloc_urb - creates a new urb for a USB driver to use
50 : : * @iso_packets: number of iso packets for this urb
51 : : * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
52 : : * valid options for this.
53 : : *
54 : : * Creates an urb for the USB driver to use, initializes a few internal
55 : : * structures, increments the usage counter, and returns a pointer to it.
56 : : *
57 : : * If the driver want to use this urb for interrupt, control, or bulk
58 : : * endpoints, pass '0' as the number of iso packets.
59 : : *
60 : : * The driver must call usb_free_urb() when it is finished with the urb.
61 : : *
62 : : * Return: A pointer to the new urb, or %NULL if no memory is available.
63 : : */
64 : 0 : struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
65 : : {
66 : : struct urb *urb;
67 : :
68 : 1305421 : urb = kmalloc(sizeof(struct urb) +
69 : 1305421 : iso_packets * sizeof(struct usb_iso_packet_descriptor),
70 : : mem_flags);
71 [ - + ]: 1305421 : if (!urb) {
72 : 0 : printk(KERN_ERR "alloc_urb: kmalloc failed\n");
73 : 0 : return NULL;
74 : : }
75 : : usb_init_urb(urb);
76 : 1305421 : return urb;
77 : : }
78 : : EXPORT_SYMBOL_GPL(usb_alloc_urb);
79 : :
80 : : /**
81 : : * usb_free_urb - frees the memory used by a urb when all users of it are finished
82 : : * @urb: pointer to the urb to free, may be NULL
83 : : *
84 : : * Must be called when a user of a urb is finished with it. When the last user
85 : : * of the urb calls this function, the memory of the urb is freed.
86 : : *
87 : : * Note: The transfer buffer associated with the urb is not freed unless the
88 : : * URB_FREE_BUFFER transfer flag is set.
89 : : */
90 : 0 : void usb_free_urb(struct urb *urb)
91 : : {
92 [ + + ]: 3414808 : if (urb)
93 : 3414806 : kref_put(&urb->kref, urb_destroy);
94 : 3414808 : }
95 : : EXPORT_SYMBOL_GPL(usb_free_urb);
96 : :
97 : : /**
98 : : * usb_get_urb - increments the reference count of the urb
99 : : * @urb: pointer to the urb to modify, may be NULL
100 : : *
101 : : * This must be called whenever a urb is transferred from a device driver to a
102 : : * host controller driver. This allows proper reference counting to happen
103 : : * for urbs.
104 : : *
105 : : * Return: A pointer to the urb with the incremented reference counter.
106 : : */
107 : 0 : struct urb *usb_get_urb(struct urb *urb)
108 : : {
109 [ + - ]: 2109385 : if (urb)
110 : : kref_get(&urb->kref);
111 : 2109385 : return urb;
112 : : }
113 : : EXPORT_SYMBOL_GPL(usb_get_urb);
114 : :
115 : : /**
116 : : * usb_anchor_urb - anchors an URB while it is processed
117 : : * @urb: pointer to the urb to anchor
118 : : * @anchor: pointer to the anchor
119 : : *
120 : : * This can be called to have access to URBs which are to be executed
121 : : * without bothering to track them
122 : : */
123 : 0 : void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
124 : : {
125 : : unsigned long flags;
126 : :
127 : 0 : spin_lock_irqsave(&anchor->lock, flags);
128 : 0 : usb_get_urb(urb);
129 : 0 : list_add_tail(&urb->anchor_list, &anchor->urb_list);
130 : 0 : urb->anchor = anchor;
131 : :
132 [ # # ]: 0 : if (unlikely(anchor->poisoned)) {
133 : 0 : atomic_inc(&urb->reject);
134 : : }
135 : :
136 : : spin_unlock_irqrestore(&anchor->lock, flags);
137 : 0 : }
138 : : EXPORT_SYMBOL_GPL(usb_anchor_urb);
139 : :
140 : : static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
141 : : {
142 [ # # ][ # # ]: 0 : return atomic_read(&anchor->suspend_wakeups) == 0 &&
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
143 : 0 : list_empty(&anchor->urb_list);
144 : : }
145 : :
146 : : /* Callers must hold anchor->lock */
147 : 0 : static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
148 : : {
149 : 0 : urb->anchor = NULL;
150 : : list_del(&urb->anchor_list);
151 : 0 : usb_put_urb(urb);
152 [ # # ]: 0 : if (usb_anchor_check_wakeup(anchor))
153 : 0 : wake_up(&anchor->wait);
154 : 0 : }
155 : :
156 : : /**
157 : : * usb_unanchor_urb - unanchors an URB
158 : : * @urb: pointer to the urb to anchor
159 : : *
160 : : * Call this to stop the system keeping track of this URB
161 : : */
162 : 0 : void usb_unanchor_urb(struct urb *urb)
163 : : {
164 : : unsigned long flags;
165 : : struct usb_anchor *anchor;
166 : :
167 [ + - ]: 2109385 : if (!urb)
168 : : return;
169 : :
170 : 2109385 : anchor = urb->anchor;
171 [ - + ]: 2109385 : if (!anchor)
172 : : return;
173 : :
174 : 0 : spin_lock_irqsave(&anchor->lock, flags);
175 : : /*
176 : : * At this point, we could be competing with another thread which
177 : : * has the same intention. To protect the urb from being unanchored
178 : : * twice, only the winner of the race gets the job.
179 : : */
180 [ # # ]: 0 : if (likely(anchor == urb->anchor))
181 : 0 : __usb_unanchor_urb(urb, anchor);
182 : : spin_unlock_irqrestore(&anchor->lock, flags);
183 : : }
184 : : EXPORT_SYMBOL_GPL(usb_unanchor_urb);
185 : :
186 : : /*-------------------------------------------------------------------*/
187 : :
188 : : /**
189 : : * usb_submit_urb - issue an asynchronous transfer request for an endpoint
190 : : * @urb: pointer to the urb describing the request
191 : : * @mem_flags: the type of memory to allocate, see kmalloc() for a list
192 : : * of valid options for this.
193 : : *
194 : : * This submits a transfer request, and transfers control of the URB
195 : : * describing that request to the USB subsystem. Request completion will
196 : : * be indicated later, asynchronously, by calling the completion handler.
197 : : * The three types of completion are success, error, and unlink
198 : : * (a software-induced fault, also called "request cancellation").
199 : : *
200 : : * URBs may be submitted in interrupt context.
201 : : *
202 : : * The caller must have correctly initialized the URB before submitting
203 : : * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
204 : : * available to ensure that most fields are correctly initialized, for
205 : : * the particular kind of transfer, although they will not initialize
206 : : * any transfer flags.
207 : : *
208 : : * If the submission is successful, the complete() callback from the URB
209 : : * will be called exactly once, when the USB core and Host Controller Driver
210 : : * (HCD) are finished with the URB. When the completion function is called,
211 : : * control of the URB is returned to the device driver which issued the
212 : : * request. The completion handler may then immediately free or reuse that
213 : : * URB.
214 : : *
215 : : * With few exceptions, USB device drivers should never access URB fields
216 : : * provided by usbcore or the HCD until its complete() is called.
217 : : * The exceptions relate to periodic transfer scheduling. For both
218 : : * interrupt and isochronous urbs, as part of successful URB submission
219 : : * urb->interval is modified to reflect the actual transfer period used
220 : : * (normally some power of two units). And for isochronous urbs,
221 : : * urb->start_frame is modified to reflect when the URB's transfers were
222 : : * scheduled to start.
223 : : *
224 : : * Not all isochronous transfer scheduling policies will work, but most
225 : : * host controller drivers should easily handle ISO queues going from now
226 : : * until 10-200 msec into the future. Drivers should try to keep at
227 : : * least one or two msec of data in the queue; many controllers require
228 : : * that new transfers start at least 1 msec in the future when they are
229 : : * added. If the driver is unable to keep up and the queue empties out,
230 : : * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
231 : : * If the flag is set, or if the queue is idle, then the URB is always
232 : : * assigned to the first available (and not yet expired) slot in the
233 : : * endpoint's schedule. If the flag is not set and the queue is active
234 : : * then the URB is always assigned to the next slot in the schedule
235 : : * following the end of the endpoint's previous URB, even if that slot is
236 : : * in the past. When a packet is assigned in this way to a slot that has
237 : : * already expired, the packet is not transmitted and the corresponding
238 : : * usb_iso_packet_descriptor's status field will return -EXDEV. If this
239 : : * would happen to all the packets in the URB, submission fails with a
240 : : * -EXDEV error code.
241 : : *
242 : : * For control endpoints, the synchronous usb_control_msg() call is
243 : : * often used (in non-interrupt context) instead of this call.
244 : : * That is often used through convenience wrappers, for the requests
245 : : * that are standardized in the USB 2.0 specification. For bulk
246 : : * endpoints, a synchronous usb_bulk_msg() call is available.
247 : : *
248 : : * Return:
249 : : * 0 on successful submissions. A negative error number otherwise.
250 : : *
251 : : * Request Queuing:
252 : : *
253 : : * URBs may be submitted to endpoints before previous ones complete, to
254 : : * minimize the impact of interrupt latencies and system overhead on data
255 : : * throughput. With that queuing policy, an endpoint's queue would never
256 : : * be empty. This is required for continuous isochronous data streams,
257 : : * and may also be required for some kinds of interrupt transfers. Such
258 : : * queuing also maximizes bandwidth utilization by letting USB controllers
259 : : * start work on later requests before driver software has finished the
260 : : * completion processing for earlier (successful) requests.
261 : : *
262 : : * As of Linux 2.6, all USB endpoint transfer queues support depths greater
263 : : * than one. This was previously a HCD-specific behavior, except for ISO
264 : : * transfers. Non-isochronous endpoint queues are inactive during cleanup
265 : : * after faults (transfer errors or cancellation).
266 : : *
267 : : * Reserved Bandwidth Transfers:
268 : : *
269 : : * Periodic transfers (interrupt or isochronous) are performed repeatedly,
270 : : * using the interval specified in the urb. Submitting the first urb to
271 : : * the endpoint reserves the bandwidth necessary to make those transfers.
272 : : * If the USB subsystem can't allocate sufficient bandwidth to perform
273 : : * the periodic request, submitting such a periodic request should fail.
274 : : *
275 : : * For devices under xHCI, the bandwidth is reserved at configuration time, or
276 : : * when the alt setting is selected. If there is not enough bus bandwidth, the
277 : : * configuration/alt setting request will fail. Therefore, submissions to
278 : : * periodic endpoints on devices under xHCI should never fail due to bandwidth
279 : : * constraints.
280 : : *
281 : : * Device drivers must explicitly request that repetition, by ensuring that
282 : : * some URB is always on the endpoint's queue (except possibly for short
283 : : * periods during completion callbacks). When there is no longer an urb
284 : : * queued, the endpoint's bandwidth reservation is canceled. This means
285 : : * drivers can use their completion handlers to ensure they keep bandwidth
286 : : * they need, by reinitializing and resubmitting the just-completed urb
287 : : * until the driver longer needs that periodic bandwidth.
288 : : *
289 : : * Memory Flags:
290 : : *
291 : : * The general rules for how to decide which mem_flags to use
292 : : * are the same as for kmalloc. There are four
293 : : * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
294 : : * GFP_ATOMIC.
295 : : *
296 : : * GFP_NOFS is not ever used, as it has not been implemented yet.
297 : : *
298 : : * GFP_ATOMIC is used when
299 : : * (a) you are inside a completion handler, an interrupt, bottom half,
300 : : * tasklet or timer, or
301 : : * (b) you are holding a spinlock or rwlock (does not apply to
302 : : * semaphores), or
303 : : * (c) current->state != TASK_RUNNING, this is the case only after
304 : : * you've changed it.
305 : : *
306 : : * GFP_NOIO is used in the block io path and error handling of storage
307 : : * devices.
308 : : *
309 : : * All other situations use GFP_KERNEL.
310 : : *
311 : : * Some more specific rules for mem_flags can be inferred, such as
312 : : * (1) start_xmit, timeout, and receive methods of network drivers must
313 : : * use GFP_ATOMIC (they are called with a spinlock held);
314 : : * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
315 : : * called with a spinlock held);
316 : : * (3) If you use a kernel thread with a network driver you must use
317 : : * GFP_NOIO, unless (b) or (c) apply;
318 : : * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
319 : : * apply or your are in a storage driver's block io path;
320 : : * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
321 : : * (6) changing firmware on a running storage or net device uses
322 : : * GFP_NOIO, unless b) or c) apply
323 : : *
324 : : */
325 : 0 : int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
326 : : {
327 : : static int pipetypes[4] = {
328 : : PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
329 : : };
330 : : int xfertype, max;
331 : : struct usb_device *dev;
332 : : struct usb_host_endpoint *ep;
333 : : int is_out;
334 : : unsigned int allowed;
335 : :
336 [ + - ][ + - ]: 2109385 : if (!urb || !urb->complete)
337 : : return -EINVAL;
338 [ - + ]: 2109385 : if (urb->hcpriv) {
339 [ # # ][ # # ]: 0 : WARN_ONCE(1, "URB %p submitted while active\n", urb);
340 : : return -EBUSY;
341 : : }
342 : :
343 : 2109385 : dev = urb->dev;
344 [ + - ][ + - ]: 2109385 : if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
345 : : return -ENODEV;
346 : :
347 : : /* For now, get the endpoint from the pipe. Eventually drivers
348 : : * will be required to set urb->ep directly and we will eliminate
349 : : * urb->pipe.
350 : : */
351 : 2109385 : ep = usb_pipe_endpoint(dev, urb->pipe);
352 [ + - ]: 2109385 : if (!ep)
353 : : return -ENOENT;
354 : :
355 : 2109385 : urb->ep = ep;
356 : 2109385 : urb->status = -EINPROGRESS;
357 : 2109385 : urb->actual_length = 0;
358 : :
359 : : /* Lots of sanity checks, so HCDs can rely on clean data
360 : : * and don't need to duplicate tests
361 : : */
362 : 4218720 : xfertype = usb_endpoint_type(&ep->desc);
363 [ + + ]: 2109385 : if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
364 : 50 : struct usb_ctrlrequest *setup =
365 : : (struct usb_ctrlrequest *) urb->setup_packet;
366 : :
367 [ + - ]: 50 : if (!setup)
368 : : return -ENOEXEC;
369 [ + + ][ + - ]: 50 : is_out = !(setup->bRequestType & USB_DIR_IN) ||
370 : 32 : !setup->wLength;
371 : : } else {
372 : : is_out = usb_endpoint_dir_out(&ep->desc);
373 : : }
374 : :
375 : : /* Clear the internal flags and cache the direction for later use */
376 : 2109385 : urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
377 : : URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
378 : : URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
379 : : URB_DMA_SG_COMBINED);
380 [ + + ]: 2109385 : urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
381 : :
382 [ + + ][ + - ]: 2109385 : if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
383 : 2109335 : dev->state < USB_STATE_CONFIGURED)
384 : : return -ENODEV;
385 : :
386 : : max = usb_endpoint_maxp(&ep->desc);
387 [ + - ]: 2109385 : if (max <= 0) {
388 : : dev_dbg(&dev->dev,
389 : : "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
390 : : usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
391 : : __func__, max);
392 : : return -EMSGSIZE;
393 : : }
394 : :
395 : : /* periodic transfers limit size per frame/uframe,
396 : : * but drivers only control those sizes for ISO.
397 : : * while we're checking, initialize return status.
398 : : */
399 [ - + ]: 2109385 : if (xfertype == USB_ENDPOINT_XFER_ISOC) {
400 : : int n, len;
401 : :
402 : : /* SuperSpeed isoc endpoints have up to 16 bursts of up to
403 : : * 3 packets each
404 : : */
405 [ # # ]: 0 : if (dev->speed == USB_SPEED_SUPER) {
406 : 0 : int burst = 1 + ep->ss_ep_comp.bMaxBurst;
407 : 0 : int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
408 : 0 : max *= burst;
409 : 0 : max *= mult;
410 : : }
411 : :
412 : : /* "high bandwidth" mode, 1-3 packets/uframe? */
413 [ # # ]: 0 : if (dev->speed == USB_SPEED_HIGH) {
414 : 0 : int mult = 1 + ((max >> 11) & 0x03);
415 : 0 : max &= 0x07ff;
416 : 0 : max *= mult;
417 : : }
418 : :
419 [ # # ]: 0 : if (urb->number_of_packets <= 0)
420 : : return -EINVAL;
421 [ # # ]: 0 : for (n = 0; n < urb->number_of_packets; n++) {
422 : 0 : len = urb->iso_frame_desc[n].length;
423 [ # # ]: 0 : if (len < 0 || len > max)
424 : : return -EMSGSIZE;
425 : 0 : urb->iso_frame_desc[n].status = -EXDEV;
426 : 0 : urb->iso_frame_desc[n].actual_length = 0;
427 : : }
428 [ - + ][ # # ]: 2109385 : } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
[ # # ]
429 : 0 : dev->speed != USB_SPEED_WIRELESS) {
430 : : struct scatterlist *sg;
431 : : int i;
432 : :
433 [ # # ]: 0 : for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
434 [ # # ]: 0 : if (sg->length % max)
435 : : return -EINVAL;
436 : : }
437 : :
438 : : /* the I/O buffer must be mapped/unmapped, except when length=0 */
439 [ + - ]: 2109385 : if (urb->transfer_buffer_length > INT_MAX)
440 : : return -EMSGSIZE;
441 : :
442 : : /*
443 : : * stuff that drivers shouldn't do, but which shouldn't
444 : : * cause problems in HCDs if they get it wrong.
445 : : */
446 : :
447 : : /* Check that the pipe's type matches the endpoint's type */
448 [ - + ]: 2109385 : if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
449 : 0 : dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
450 : : usb_pipetype(urb->pipe), pipetypes[xfertype]);
451 : :
452 : : /* Check against a simple/standard policy */
453 : : allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
454 : : URB_FREE_BUFFER);
455 [ + + + - ]: 2109385 : switch (xfertype) {
456 : : case USB_ENDPOINT_XFER_BULK:
457 [ + + ]: 2109325 : if (is_out)
458 : : allowed |= URB_ZERO_PACKET;
459 : : /* FALLTHROUGH */
460 : : case USB_ENDPOINT_XFER_CONTROL:
461 : 2109375 : allowed |= URB_NO_FSBR; /* only affects UHCI */
462 : : /* FALLTHROUGH */
463 : : default: /* all non-iso endpoints */
464 [ + + ]: 2109385 : if (!is_out)
465 : 759597 : allowed |= URB_SHORT_NOT_OK;
466 : : break;
467 : : case USB_ENDPOINT_XFER_ISOC:
468 : : allowed |= URB_ISO_ASAP;
469 : : break;
470 : : }
471 : 2109385 : allowed &= urb->transfer_flags;
472 : :
473 : : /* warn if submitter gave bogus flags */
474 [ - + ]: 2109385 : if (allowed != urb->transfer_flags)
475 : 0 : dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
476 : : urb->transfer_flags, allowed);
477 : :
478 : : /*
479 : : * Force periodic transfer intervals to be legal values that are
480 : : * a power of two (so HCDs don't need to).
481 : : *
482 : : * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
483 : : * supports different values... this uses EHCI/UHCI defaults (and
484 : : * EHCI can use smaller non-default values).
485 : : */
486 [ + + ]: 2109385 : switch (xfertype) {
487 : : case USB_ENDPOINT_XFER_ISOC:
488 : : case USB_ENDPOINT_XFER_INT:
489 : : /* too small? */
490 [ - + ]: 10 : switch (dev->speed) {
491 : : case USB_SPEED_WIRELESS:
492 [ # # ]: 0 : if ((urb->interval < 6)
493 [ # # ]: 0 : && (xfertype == USB_ENDPOINT_XFER_INT))
494 : : return -EINVAL;
495 : : default:
496 [ + - ]: 10 : if (urb->interval <= 0)
497 : : return -EINVAL;
498 : : break;
499 : : }
500 : : /* too big? */
501 [ - - + - : 10 : switch (dev->speed) {
- ]
502 : : case USB_SPEED_SUPER: /* units are 125us */
503 : : /* Handle up to 2^(16-1) microframes */
504 [ # # ]: 0 : if (urb->interval > (1 << 15))
505 : : return -EINVAL;
506 : : max = 1 << 15;
507 : : break;
508 : : case USB_SPEED_WIRELESS:
509 [ # # ]: 0 : if (urb->interval > 16)
510 : : return -EINVAL;
511 : : break;
512 : : case USB_SPEED_HIGH: /* units are microframes */
513 : : /* NOTE usb handles 2^15 */
514 [ - + ]: 10 : if (urb->interval > (1024 * 8))
515 : 0 : urb->interval = 1024 * 8;
516 : : max = 1024 * 8;
517 : : break;
518 : : case USB_SPEED_FULL: /* units are frames/msec */
519 : : case USB_SPEED_LOW:
520 [ # # ]: 0 : if (xfertype == USB_ENDPOINT_XFER_INT) {
521 [ # # ]: 0 : if (urb->interval > 255)
522 : : return -EINVAL;
523 : : /* NOTE ohci only handles up to 32 */
524 : : max = 128;
525 : : } else {
526 [ # # ]: 0 : if (urb->interval > 1024)
527 : 0 : urb->interval = 1024;
528 : : /* NOTE usb and ohci handle up to 2^15 */
529 : : max = 1024;
530 : : }
531 : : break;
532 : : default:
533 : : return -EINVAL;
534 : : }
535 [ + - ]: 2109395 : if (dev->speed != USB_SPEED_WIRELESS) {
536 : : /* Round down to a power of 2, no more than max */
537 [ + + ][ - + ]: 2109405 : urb->interval = min(max, 1 << ilog2(urb->interval));
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ - - ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
538 : : }
539 : : }
540 : :
541 : 2109385 : return usb_hcd_submit_urb(urb, mem_flags);
542 : : }
543 : : EXPORT_SYMBOL_GPL(usb_submit_urb);
544 : :
545 : : /*-------------------------------------------------------------------*/
546 : :
547 : : /**
548 : : * usb_unlink_urb - abort/cancel a transfer request for an endpoint
549 : : * @urb: pointer to urb describing a previously submitted request,
550 : : * may be NULL
551 : : *
552 : : * This routine cancels an in-progress request. URBs complete only once
553 : : * per submission, and may be canceled only once per submission.
554 : : * Successful cancellation means termination of @urb will be expedited
555 : : * and the completion handler will be called with a status code
556 : : * indicating that the request has been canceled (rather than any other
557 : : * code).
558 : : *
559 : : * Drivers should not call this routine or related routines, such as
560 : : * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
561 : : * method has returned. The disconnect function should synchronize with
562 : : * a driver's I/O routines to insure that all URB-related activity has
563 : : * completed before it returns.
564 : : *
565 : : * This request is asynchronous, however the HCD might call the ->complete()
566 : : * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
567 : : * must not hold any locks that may be taken by the completion function.
568 : : * Success is indicated by returning -EINPROGRESS, at which time the URB will
569 : : * probably not yet have been given back to the device driver. When it is
570 : : * eventually called, the completion function will see @urb->status ==
571 : : * -ECONNRESET.
572 : : * Failure is indicated by usb_unlink_urb() returning any other value.
573 : : * Unlinking will fail when @urb is not currently "linked" (i.e., it was
574 : : * never submitted, or it was unlinked before, or the hardware is already
575 : : * finished with it), even if the completion handler has not yet run.
576 : : *
577 : : * The URB must not be deallocated while this routine is running. In
578 : : * particular, when a driver calls this routine, it must insure that the
579 : : * completion handler cannot deallocate the URB.
580 : : *
581 : : * Return: -EINPROGRESS on success. See description for other values on
582 : : * failure.
583 : : *
584 : : * Unlinking and Endpoint Queues:
585 : : *
586 : : * [The behaviors and guarantees described below do not apply to virtual
587 : : * root hubs but only to endpoint queues for physical USB devices.]
588 : : *
589 : : * Host Controller Drivers (HCDs) place all the URBs for a particular
590 : : * endpoint in a queue. Normally the queue advances as the controller
591 : : * hardware processes each request. But when an URB terminates with an
592 : : * error its queue generally stops (see below), at least until that URB's
593 : : * completion routine returns. It is guaranteed that a stopped queue
594 : : * will not restart until all its unlinked URBs have been fully retired,
595 : : * with their completion routines run, even if that's not until some time
596 : : * after the original completion handler returns. The same behavior and
597 : : * guarantee apply when an URB terminates because it was unlinked.
598 : : *
599 : : * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
600 : : * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
601 : : * and -EREMOTEIO. Control endpoint queues behave the same way except
602 : : * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
603 : : * for isochronous endpoints are treated differently, because they must
604 : : * advance at fixed rates. Such queues do not stop when an URB
605 : : * encounters an error or is unlinked. An unlinked isochronous URB may
606 : : * leave a gap in the stream of packets; it is undefined whether such
607 : : * gaps can be filled in.
608 : : *
609 : : * Note that early termination of an URB because a short packet was
610 : : * received will generate a -EREMOTEIO error if and only if the
611 : : * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
612 : : * drivers can build deep queues for large or complex bulk transfers
613 : : * and clean them up reliably after any sort of aborted transfer by
614 : : * unlinking all pending URBs at the first fault.
615 : : *
616 : : * When a control URB terminates with an error other than -EREMOTEIO, it
617 : : * is quite likely that the status stage of the transfer will not take
618 : : * place.
619 : : */
620 : 0 : int usb_unlink_urb(struct urb *urb)
621 : : {
622 [ # # ]: 0 : if (!urb)
623 : : return -EINVAL;
624 [ # # ]: 0 : if (!urb->dev)
625 : : return -ENODEV;
626 [ # # ]: 0 : if (!urb->ep)
627 : : return -EIDRM;
628 : 0 : return usb_hcd_unlink_urb(urb, -ECONNRESET);
629 : : }
630 : : EXPORT_SYMBOL_GPL(usb_unlink_urb);
631 : :
632 : : /**
633 : : * usb_kill_urb - cancel a transfer request and wait for it to finish
634 : : * @urb: pointer to URB describing a previously submitted request,
635 : : * may be NULL
636 : : *
637 : : * This routine cancels an in-progress request. It is guaranteed that
638 : : * upon return all completion handlers will have finished and the URB
639 : : * will be totally idle and available for reuse. These features make
640 : : * this an ideal way to stop I/O in a disconnect() callback or close()
641 : : * function. If the request has not already finished or been unlinked
642 : : * the completion handler will see urb->status == -ENOENT.
643 : : *
644 : : * While the routine is running, attempts to resubmit the URB will fail
645 : : * with error -EPERM. Thus even if the URB's completion handler always
646 : : * tries to resubmit, it will not succeed and the URB will become idle.
647 : : *
648 : : * The URB must not be deallocated while this routine is running. In
649 : : * particular, when a driver calls this routine, it must insure that the
650 : : * completion handler cannot deallocate the URB.
651 : : *
652 : : * This routine may not be used in an interrupt context (such as a bottom
653 : : * half or a completion handler), or when holding a spinlock, or in other
654 : : * situations where the caller can't schedule().
655 : : *
656 : : * This routine should not be called by a driver after its disconnect
657 : : * method has returned.
658 : : */
659 : 0 : void usb_kill_urb(struct urb *urb)
660 : : {
661 : : might_sleep();
662 [ + + ][ + - ]: 6 : if (!(urb && urb->dev && urb->ep))
[ - + ]
663 : 6 : return;
664 : 0 : atomic_inc(&urb->reject);
665 : :
666 : 0 : usb_hcd_unlink_urb(urb, -ENOENT);
667 [ # # ][ # # ]: 0 : wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
668 : :
669 : : atomic_dec(&urb->reject);
670 : : }
671 : : EXPORT_SYMBOL_GPL(usb_kill_urb);
672 : :
673 : : /**
674 : : * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
675 : : * @urb: pointer to URB describing a previously submitted request,
676 : : * may be NULL
677 : : *
678 : : * This routine cancels an in-progress request. It is guaranteed that
679 : : * upon return all completion handlers will have finished and the URB
680 : : * will be totally idle and cannot be reused. These features make
681 : : * this an ideal way to stop I/O in a disconnect() callback.
682 : : * If the request has not already finished or been unlinked
683 : : * the completion handler will see urb->status == -ENOENT.
684 : : *
685 : : * After and while the routine runs, attempts to resubmit the URB will fail
686 : : * with error -EPERM. Thus even if the URB's completion handler always
687 : : * tries to resubmit, it will not succeed and the URB will become idle.
688 : : *
689 : : * The URB must not be deallocated while this routine is running. In
690 : : * particular, when a driver calls this routine, it must insure that the
691 : : * completion handler cannot deallocate the URB.
692 : : *
693 : : * This routine may not be used in an interrupt context (such as a bottom
694 : : * half or a completion handler), or when holding a spinlock, or in other
695 : : * situations where the caller can't schedule().
696 : : *
697 : : * This routine should not be called by a driver after its disconnect
698 : : * method has returned.
699 : : */
700 : 0 : void usb_poison_urb(struct urb *urb)
701 : : {
702 : : might_sleep();
703 [ # # ]: 0 : if (!urb)
704 : : return;
705 : 0 : atomic_inc(&urb->reject);
706 : :
707 [ # # ][ # # ]: 0 : if (!urb->dev || !urb->ep)
708 : : return;
709 : :
710 : 0 : usb_hcd_unlink_urb(urb, -ENOENT);
711 [ # # ][ # # ]: 0 : wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
712 : : }
713 : : EXPORT_SYMBOL_GPL(usb_poison_urb);
714 : :
715 : 0 : void usb_unpoison_urb(struct urb *urb)
716 : : {
717 [ # # ]: 0 : if (!urb)
718 : 0 : return;
719 : :
720 : 0 : atomic_dec(&urb->reject);
721 : : }
722 : : EXPORT_SYMBOL_GPL(usb_unpoison_urb);
723 : :
724 : : /**
725 : : * usb_block_urb - reliably prevent further use of an URB
726 : : * @urb: pointer to URB to be blocked, may be NULL
727 : : *
728 : : * After the routine has run, attempts to resubmit the URB will fail
729 : : * with error -EPERM. Thus even if the URB's completion handler always
730 : : * tries to resubmit, it will not succeed and the URB will become idle.
731 : : *
732 : : * The URB must not be deallocated while this routine is running. In
733 : : * particular, when a driver calls this routine, it must insure that the
734 : : * completion handler cannot deallocate the URB.
735 : : */
736 : 0 : void usb_block_urb(struct urb *urb)
737 : : {
738 [ # # ]: 0 : if (!urb)
739 : 0 : return;
740 : :
741 : 0 : atomic_inc(&urb->reject);
742 : : }
743 : : EXPORT_SYMBOL_GPL(usb_block_urb);
744 : :
745 : : /**
746 : : * usb_kill_anchored_urbs - cancel transfer requests en masse
747 : : * @anchor: anchor the requests are bound to
748 : : *
749 : : * this allows all outstanding URBs to be killed starting
750 : : * from the back of the queue
751 : : *
752 : : * This routine should not be called by a driver after its disconnect
753 : : * method has returned.
754 : : */
755 : 0 : void usb_kill_anchored_urbs(struct usb_anchor *anchor)
756 : : {
757 : : struct urb *victim;
758 : :
759 : : spin_lock_irq(&anchor->lock);
760 [ # # ]: 0 : while (!list_empty(&anchor->urb_list)) {
761 : 0 : victim = list_entry(anchor->urb_list.prev, struct urb,
762 : : anchor_list);
763 : : /* we must make sure the URB isn't freed before we kill it*/
764 : 0 : usb_get_urb(victim);
765 : : spin_unlock_irq(&anchor->lock);
766 : : /* this will unanchor the URB */
767 : 0 : usb_kill_urb(victim);
768 : 0 : usb_put_urb(victim);
769 : : spin_lock_irq(&anchor->lock);
770 : : }
771 : : spin_unlock_irq(&anchor->lock);
772 : 0 : }
773 : : EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
774 : :
775 : :
776 : : /**
777 : : * usb_poison_anchored_urbs - cease all traffic from an anchor
778 : : * @anchor: anchor the requests are bound to
779 : : *
780 : : * this allows all outstanding URBs to be poisoned starting
781 : : * from the back of the queue. Newly added URBs will also be
782 : : * poisoned
783 : : *
784 : : * This routine should not be called by a driver after its disconnect
785 : : * method has returned.
786 : : */
787 : 0 : void usb_poison_anchored_urbs(struct usb_anchor *anchor)
788 : : {
789 : : struct urb *victim;
790 : :
791 : : spin_lock_irq(&anchor->lock);
792 : 0 : anchor->poisoned = 1;
793 [ # # ]: 0 : while (!list_empty(&anchor->urb_list)) {
794 : 0 : victim = list_entry(anchor->urb_list.prev, struct urb,
795 : : anchor_list);
796 : : /* we must make sure the URB isn't freed before we kill it*/
797 : 0 : usb_get_urb(victim);
798 : : spin_unlock_irq(&anchor->lock);
799 : : /* this will unanchor the URB */
800 : 0 : usb_poison_urb(victim);
801 : 0 : usb_put_urb(victim);
802 : : spin_lock_irq(&anchor->lock);
803 : : }
804 : : spin_unlock_irq(&anchor->lock);
805 : 0 : }
806 : : EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
807 : :
808 : : /**
809 : : * usb_unpoison_anchored_urbs - let an anchor be used successfully again
810 : : * @anchor: anchor the requests are bound to
811 : : *
812 : : * Reverses the effect of usb_poison_anchored_urbs
813 : : * the anchor can be used normally after it returns
814 : : */
815 : 0 : void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
816 : : {
817 : : unsigned long flags;
818 : : struct urb *lazarus;
819 : :
820 : 0 : spin_lock_irqsave(&anchor->lock, flags);
821 [ # # ]: 0 : list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
822 : 0 : usb_unpoison_urb(lazarus);
823 : : }
824 : 0 : anchor->poisoned = 0;
825 : : spin_unlock_irqrestore(&anchor->lock, flags);
826 : 0 : }
827 : : EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
828 : : /**
829 : : * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
830 : : * @anchor: anchor the requests are bound to
831 : : *
832 : : * this allows all outstanding URBs to be unlinked starting
833 : : * from the back of the queue. This function is asynchronous.
834 : : * The unlinking is just tiggered. It may happen after this
835 : : * function has returned.
836 : : *
837 : : * This routine should not be called by a driver after its disconnect
838 : : * method has returned.
839 : : */
840 : 0 : void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
841 : : {
842 : : struct urb *victim;
843 : :
844 [ # # ]: 0 : while ((victim = usb_get_from_anchor(anchor)) != NULL) {
845 : 0 : usb_unlink_urb(victim);
846 : 0 : usb_put_urb(victim);
847 : : }
848 : 0 : }
849 : : EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
850 : :
851 : : /**
852 : : * usb_anchor_suspend_wakeups
853 : : * @anchor: the anchor you want to suspend wakeups on
854 : : *
855 : : * Call this to stop the last urb being unanchored from waking up any
856 : : * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
857 : : * back path to delay waking up until after the completion handler has run.
858 : : */
859 : 0 : void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
860 : : {
861 [ - + ]: 2109385 : if (anchor)
862 : 0 : atomic_inc(&anchor->suspend_wakeups);
863 : 0 : }
864 : : EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
865 : :
866 : : /**
867 : : * usb_anchor_resume_wakeups
868 : : * @anchor: the anchor you want to resume wakeups on
869 : : *
870 : : * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
871 : : * wake up any current waiters if the anchor is empty.
872 : : */
873 : 0 : void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
874 : : {
875 [ - + ]: 2109385 : if (!anchor)
876 : 0 : return;
877 : :
878 : 0 : atomic_dec(&anchor->suspend_wakeups);
879 [ # # ]: 0 : if (usb_anchor_check_wakeup(anchor))
880 : 0 : wake_up(&anchor->wait);
881 : : }
882 : : EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
883 : :
884 : : /**
885 : : * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
886 : : * @anchor: the anchor you want to become unused
887 : : * @timeout: how long you are willing to wait in milliseconds
888 : : *
889 : : * Call this is you want to be sure all an anchor's
890 : : * URBs have finished
891 : : *
892 : : * Return: Non-zero if the anchor became unused. Zero on timeout.
893 : : */
894 : 0 : int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
895 : : unsigned int timeout)
896 : : {
897 [ # # ][ # # ]: 0 : return wait_event_timeout(anchor->wait,
[ # # ][ # # ]
898 : : usb_anchor_check_wakeup(anchor),
899 : : msecs_to_jiffies(timeout));
900 : : }
901 : : EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
902 : :
903 : : /**
904 : : * usb_get_from_anchor - get an anchor's oldest urb
905 : : * @anchor: the anchor whose urb you want
906 : : *
907 : : * This will take the oldest urb from an anchor,
908 : : * unanchor and return it
909 : : *
910 : : * Return: The oldest urb from @anchor, or %NULL if @anchor has no
911 : : * urbs associated with it.
912 : : */
913 : 0 : struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
914 : : {
915 : : struct urb *victim;
916 : : unsigned long flags;
917 : :
918 : 0 : spin_lock_irqsave(&anchor->lock, flags);
919 [ # # ]: 0 : if (!list_empty(&anchor->urb_list)) {
920 : 0 : victim = list_entry(anchor->urb_list.next, struct urb,
921 : : anchor_list);
922 : 0 : usb_get_urb(victim);
923 : 0 : __usb_unanchor_urb(victim, anchor);
924 : : } else {
925 : : victim = NULL;
926 : : }
927 : : spin_unlock_irqrestore(&anchor->lock, flags);
928 : :
929 : 0 : return victim;
930 : : }
931 : :
932 : : EXPORT_SYMBOL_GPL(usb_get_from_anchor);
933 : :
934 : : /**
935 : : * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
936 : : * @anchor: the anchor whose urbs you want to unanchor
937 : : *
938 : : * use this to get rid of all an anchor's urbs
939 : : */
940 : 0 : void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
941 : : {
942 : : struct urb *victim;
943 : : unsigned long flags;
944 : :
945 : 0 : spin_lock_irqsave(&anchor->lock, flags);
946 [ # # ]: 0 : while (!list_empty(&anchor->urb_list)) {
947 : 0 : victim = list_entry(anchor->urb_list.prev, struct urb,
948 : : anchor_list);
949 : 0 : __usb_unanchor_urb(victim, anchor);
950 : : }
951 : : spin_unlock_irqrestore(&anchor->lock, flags);
952 : 0 : }
953 : :
954 : : EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
955 : :
956 : : /**
957 : : * usb_anchor_empty - is an anchor empty
958 : : * @anchor: the anchor you want to query
959 : : *
960 : : * Return: 1 if the anchor has no urbs associated with it.
961 : : */
962 : 0 : int usb_anchor_empty(struct usb_anchor *anchor)
963 : : {
964 : 0 : return list_empty(&anchor->urb_list);
965 : : }
966 : :
967 : : EXPORT_SYMBOL_GPL(usb_anchor_empty);
968 : :
|