Branch data Line data Source code
1 : : /*
2 : : * arch/arm/include/asm/cacheflush.h
3 : : *
4 : : * Copyright (C) 1999-2002 Russell King
5 : : *
6 : : * This program is free software; you can redistribute it and/or modify
7 : : * it under the terms of the GNU General Public License version 2 as
8 : : * published by the Free Software Foundation.
9 : : */
10 : : #ifndef _ASMARM_CACHEFLUSH_H
11 : : #define _ASMARM_CACHEFLUSH_H
12 : :
13 : : #include <linux/mm.h>
14 : :
15 : : #include <asm/glue-cache.h>
16 : : #include <asm/shmparam.h>
17 : : #include <asm/cachetype.h>
18 : : #include <asm/outercache.h>
19 : :
20 : : #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
21 : :
22 : : /*
23 : : * This flag is used to indicate that the page pointed to by a pte is clean
24 : : * and does not require cleaning before returning it to the user.
25 : : */
26 : : #define PG_dcache_clean PG_arch_1
27 : :
28 : : /*
29 : : * MM Cache Management
30 : : * ===================
31 : : *
32 : : * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
33 : : * implement these methods.
34 : : *
35 : : * Start addresses are inclusive and end addresses are exclusive;
36 : : * start addresses should be rounded down, end addresses up.
37 : : *
38 : : * See Documentation/cachetlb.txt for more information.
39 : : * Please note that the implementation of these, and the required
40 : : * effects are cache-type (VIVT/VIPT/PIPT) specific.
41 : : *
42 : : * flush_icache_all()
43 : : *
44 : : * Unconditionally clean and invalidate the entire icache.
45 : : * Currently only needed for cache-v6.S and cache-v7.S, see
46 : : * __flush_icache_all for the generic implementation.
47 : : *
48 : : * flush_kern_all()
49 : : *
50 : : * Unconditionally clean and invalidate the entire cache.
51 : : *
52 : : * flush_kern_louis()
53 : : *
54 : : * Flush data cache levels up to the level of unification
55 : : * inner shareable and invalidate the I-cache.
56 : : * Only needed from v7 onwards, falls back to flush_cache_all()
57 : : * for all other processor versions.
58 : : *
59 : : * flush_user_all()
60 : : *
61 : : * Clean and invalidate all user space cache entries
62 : : * before a change of page tables.
63 : : *
64 : : * flush_user_range(start, end, flags)
65 : : *
66 : : * Clean and invalidate a range of cache entries in the
67 : : * specified address space before a change of page tables.
68 : : * - start - user start address (inclusive, page aligned)
69 : : * - end - user end address (exclusive, page aligned)
70 : : * - flags - vma->vm_flags field
71 : : *
72 : : * coherent_kern_range(start, end)
73 : : *
74 : : * Ensure coherency between the Icache and the Dcache in the
75 : : * region described by start, end. If you have non-snooping
76 : : * Harvard caches, you need to implement this function.
77 : : * - start - virtual start address
78 : : * - end - virtual end address
79 : : *
80 : : * coherent_user_range(start, end)
81 : : *
82 : : * Ensure coherency between the Icache and the Dcache in the
83 : : * region described by start, end. If you have non-snooping
84 : : * Harvard caches, you need to implement this function.
85 : : * - start - virtual start address
86 : : * - end - virtual end address
87 : : *
88 : : * flush_kern_dcache_area(kaddr, size)
89 : : *
90 : : * Ensure that the data held in page is written back.
91 : : * - kaddr - page address
92 : : * - size - region size
93 : : *
94 : : * DMA Cache Coherency
95 : : * ===================
96 : : *
97 : : * dma_flush_range(start, end)
98 : : *
99 : : * Clean and invalidate the specified virtual address range.
100 : : * - start - virtual start address
101 : : * - end - virtual end address
102 : : */
103 : :
104 : : struct cpu_cache_fns {
105 : : void (*flush_icache_all)(void);
106 : : void (*flush_kern_all)(void);
107 : : void (*flush_kern_louis)(void);
108 : : void (*flush_user_all)(void);
109 : : void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
110 : :
111 : : void (*coherent_kern_range)(unsigned long, unsigned long);
112 : : int (*coherent_user_range)(unsigned long, unsigned long);
113 : : void (*flush_kern_dcache_area)(void *, size_t);
114 : :
115 : : void (*dma_map_area)(const void *, size_t, int);
116 : : void (*dma_unmap_area)(const void *, size_t, int);
117 : :
118 : : void (*dma_flush_range)(const void *, const void *);
119 : : };
120 : :
121 : : /*
122 : : * Select the calling method
123 : : */
124 : : #ifdef MULTI_CACHE
125 : :
126 : : extern struct cpu_cache_fns cpu_cache;
127 : :
128 : : #define __cpuc_flush_icache_all cpu_cache.flush_icache_all
129 : : #define __cpuc_flush_kern_all cpu_cache.flush_kern_all
130 : : #define __cpuc_flush_kern_louis cpu_cache.flush_kern_louis
131 : : #define __cpuc_flush_user_all cpu_cache.flush_user_all
132 : : #define __cpuc_flush_user_range cpu_cache.flush_user_range
133 : : #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
134 : : #define __cpuc_coherent_user_range cpu_cache.coherent_user_range
135 : : #define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area
136 : :
137 : : /*
138 : : * These are private to the dma-mapping API. Do not use directly.
139 : : * Their sole purpose is to ensure that data held in the cache
140 : : * is visible to DMA, or data written by DMA to system memory is
141 : : * visible to the CPU.
142 : : */
143 : : #define dmac_map_area cpu_cache.dma_map_area
144 : : #define dmac_unmap_area cpu_cache.dma_unmap_area
145 : : #define dmac_flush_range cpu_cache.dma_flush_range
146 : :
147 : : #else
148 : :
149 : : extern void __cpuc_flush_icache_all(void);
150 : : extern void __cpuc_flush_kern_all(void);
151 : : extern void __cpuc_flush_kern_louis(void);
152 : : extern void __cpuc_flush_user_all(void);
153 : : extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
154 : : extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
155 : : extern int __cpuc_coherent_user_range(unsigned long, unsigned long);
156 : : extern void __cpuc_flush_dcache_area(void *, size_t);
157 : :
158 : : /*
159 : : * These are private to the dma-mapping API. Do not use directly.
160 : : * Their sole purpose is to ensure that data held in the cache
161 : : * is visible to DMA, or data written by DMA to system memory is
162 : : * visible to the CPU.
163 : : */
164 : : extern void dmac_map_area(const void *, size_t, int);
165 : : extern void dmac_unmap_area(const void *, size_t, int);
166 : : extern void dmac_flush_range(const void *, const void *);
167 : :
168 : : #endif
169 : :
170 : : /*
171 : : * Copy user data from/to a page which is mapped into a different
172 : : * processes address space. Really, we want to allow our "user
173 : : * space" model to handle this.
174 : : */
175 : : extern void copy_to_user_page(struct vm_area_struct *, struct page *,
176 : : unsigned long, void *, const void *, unsigned long);
177 : : #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
178 : : do { \
179 : : memcpy(dst, src, len); \
180 : : } while (0)
181 : :
182 : : /*
183 : : * Convert calls to our calling convention.
184 : : */
185 : :
186 : : /* Invalidate I-cache */
187 : : #define __flush_icache_all_generic() \
188 : : asm("mcr p15, 0, %0, c7, c5, 0" \
189 : : : : "r" (0));
190 : :
191 : : /* Invalidate I-cache inner shareable */
192 : : #define __flush_icache_all_v7_smp() \
193 : : asm("mcr p15, 0, %0, c7, c1, 0" \
194 : : : : "r" (0));
195 : :
196 : : /*
197 : : * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
198 : : * will fall through to use __flush_icache_all_generic.
199 : : */
200 : : #if (defined(CONFIG_CPU_V7) && \
201 : : (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
202 : : defined(CONFIG_SMP_ON_UP)
203 : : #define __flush_icache_preferred __cpuc_flush_icache_all
204 : : #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
205 : : #define __flush_icache_preferred __flush_icache_all_v7_smp
206 : : #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
207 : : #define __flush_icache_preferred __cpuc_flush_icache_all
208 : : #else
209 : : #define __flush_icache_preferred __flush_icache_all_generic
210 : : #endif
211 : :
212 : : static inline void __flush_icache_all(void)
213 : : {
214 : 34855966 : __flush_icache_preferred();
215 : 34858854 : dsb();
216 : : }
217 : :
218 : : /*
219 : : * Flush caches up to Level of Unification Inner Shareable
220 : : */
221 : : #define flush_cache_louis() __cpuc_flush_kern_louis()
222 : :
223 : : #define flush_cache_all() __cpuc_flush_kern_all()
224 : :
225 : : static inline void vivt_flush_cache_mm(struct mm_struct *mm)
226 : : {
227 : : if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
228 : : __cpuc_flush_user_all();
229 : : }
230 : :
231 : : static inline void
232 : : vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
233 : : {
234 : : struct mm_struct *mm = vma->vm_mm;
235 : :
236 : : if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
237 : : __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
238 : : vma->vm_flags);
239 : : }
240 : :
241 : : static inline void
242 : : vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
243 : : {
244 : : struct mm_struct *mm = vma->vm_mm;
245 : :
246 : : if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
247 : : unsigned long addr = user_addr & PAGE_MASK;
248 : : __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
249 : : }
250 : : }
251 : :
252 : : #ifndef CONFIG_CPU_CACHE_VIPT
253 : : #define flush_cache_mm(mm) \
254 : : vivt_flush_cache_mm(mm)
255 : : #define flush_cache_range(vma,start,end) \
256 : : vivt_flush_cache_range(vma,start,end)
257 : : #define flush_cache_page(vma,addr,pfn) \
258 : : vivt_flush_cache_page(vma,addr,pfn)
259 : : #else
260 : : extern void flush_cache_mm(struct mm_struct *mm);
261 : : extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
262 : : extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
263 : : #endif
264 : :
265 : : #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
266 : :
267 : : /*
268 : : * flush_cache_user_range is used when we want to ensure that the
269 : : * Harvard caches are synchronised for the user space address range.
270 : : * This is used for the ARM private sys_cacheflush system call.
271 : : */
272 : : #define flush_cache_user_range(s,e) __cpuc_coherent_user_range(s,e)
273 : :
274 : : /*
275 : : * Perform necessary cache operations to ensure that data previously
276 : : * stored within this range of addresses can be executed by the CPU.
277 : : */
278 : : #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
279 : :
280 : : /*
281 : : * Perform necessary cache operations to ensure that the TLB will
282 : : * see data written in the specified area.
283 : : */
284 : : #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
285 : :
286 : : /*
287 : : * flush_dcache_page is used when the kernel has written to the page
288 : : * cache page at virtual address page->virtual.
289 : : *
290 : : * If this page isn't mapped (ie, page_mapping == NULL), or it might
291 : : * have userspace mappings, then we _must_ always clean + invalidate
292 : : * the dcache entries associated with the kernel mapping.
293 : : *
294 : : * Otherwise we can defer the operation, and clean the cache when we are
295 : : * about to change to user space. This is the same method as used on SPARC64.
296 : : * See update_mmu_cache for the user space part.
297 : : */
298 : : #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
299 : : extern void flush_dcache_page(struct page *);
300 : :
301 : : static inline void flush_kernel_vmap_range(void *addr, int size)
302 : : {
303 : : if ((cache_is_vivt() || cache_is_vipt_aliasing()))
304 : : __cpuc_flush_dcache_area(addr, (size_t)size);
305 : : }
306 : : static inline void invalidate_kernel_vmap_range(void *addr, int size)
307 : : {
308 : : if ((cache_is_vivt() || cache_is_vipt_aliasing()))
309 : : __cpuc_flush_dcache_area(addr, (size_t)size);
310 : : }
311 : :
312 : : #define ARCH_HAS_FLUSH_ANON_PAGE
313 : : static inline void flush_anon_page(struct vm_area_struct *vma,
314 : 2498107 : struct page *page, unsigned long vmaddr)
315 : : {
316 : : extern void __flush_anon_page(struct vm_area_struct *vma,
317 : : struct page *, unsigned long);
318 [ + + ]: 2498107 : if (PageAnon(page))
319 : 2498025 : __flush_anon_page(vma, page, vmaddr);
320 : : }
321 : :
322 : : #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
323 : : extern void flush_kernel_dcache_page(struct page *);
324 : :
325 : : #define flush_dcache_mmap_lock(mapping) \
326 : : spin_lock_irq(&(mapping)->tree_lock)
327 : : #define flush_dcache_mmap_unlock(mapping) \
328 : : spin_unlock_irq(&(mapping)->tree_lock)
329 : :
330 : : #define flush_icache_user_range(vma,page,addr,len) \
331 : : flush_dcache_page(page)
332 : :
333 : : /*
334 : : * We don't appear to need to do anything here. In fact, if we did, we'd
335 : : * duplicate cache flushing elsewhere performed by flush_dcache_page().
336 : : */
337 : : #define flush_icache_page(vma,page) do { } while (0)
338 : :
339 : : /*
340 : : * flush_cache_vmap() is used when creating mappings (eg, via vmap,
341 : : * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
342 : : * caches, since the direct-mappings of these pages may contain cached
343 : : * data, we need to do a full cache flush to ensure that writebacks
344 : : * don't corrupt data placed into these pages via the new mappings.
345 : : */
346 : : static inline void flush_cache_vmap(unsigned long start, unsigned long end)
347 : : {
348 [ # # ][ - + ]: 39648 : if (!cache_is_vipt_nonaliasing())
349 : 0 : flush_cache_all();
350 : : else
351 : : /*
352 : : * set_pte_at() called from vmap_pte_range() does not
353 : : * have a DSB after cleaning the cache line.
354 : : */
355 : 39648 : dsb(ishst);
356 : : }
357 : :
358 : : static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
359 : : {
360 [ # # ][ # # ]: 39568 : if (!cache_is_vipt_nonaliasing())
[ - + ]
361 : 0 : flush_cache_all();
362 : : }
363 : :
364 : : /*
365 : : * Memory synchronization helpers for mixed cached vs non cached accesses.
366 : : *
367 : : * Some synchronization algorithms have to set states in memory with the
368 : : * cache enabled or disabled depending on the code path. It is crucial
369 : : * to always ensure proper cache maintenance to update main memory right
370 : : * away in that case.
371 : : *
372 : : * Any cached write must be followed by a cache clean operation.
373 : : * Any cached read must be preceded by a cache invalidate operation.
374 : : * Yet, in the read case, a cache flush i.e. atomic clean+invalidate
375 : : * operation is needed to avoid discarding possible concurrent writes to the
376 : : * accessed memory.
377 : : *
378 : : * Also, in order to prevent a cached writer from interfering with an
379 : : * adjacent non-cached writer, each state variable must be located to
380 : : * a separate cache line.
381 : : */
382 : :
383 : : /*
384 : : * This needs to be >= the max cache writeback size of all
385 : : * supported platforms included in the current kernel configuration.
386 : : * This is used to align state variables to their own cache lines.
387 : : */
388 : : #define __CACHE_WRITEBACK_ORDER 6 /* guessed from existing platforms */
389 : : #define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER)
390 : :
391 : : /*
392 : : * There is no __cpuc_clean_dcache_area but we use it anyway for
393 : : * code intent clarity, and alias it to __cpuc_flush_dcache_area.
394 : : */
395 : : #define __cpuc_clean_dcache_area __cpuc_flush_dcache_area
396 : :
397 : : /*
398 : : * Ensure preceding writes to *p by this CPU are visible to
399 : : * subsequent reads by other CPUs:
400 : : */
401 : : static inline void __sync_cache_range_w(volatile void *p, size_t size)
402 : : {
403 : : char *_p = (char *)p;
404 : :
405 : 18208854 : __cpuc_clean_dcache_area(_p, size);
406 : 36369792 : outer_clean_range(__pa(_p), __pa(_p + size));
407 : : }
408 : :
409 : : /*
410 : : * Ensure preceding writes to *p by other CPUs are visible to
411 : : * subsequent reads by this CPU. We must be careful not to
412 : : * discard data simultaneously written by another CPU, hence the
413 : : * usage of flush rather than invalidate operations.
414 : : */
415 : : static inline void __sync_cache_range_r(volatile void *p, size_t size)
416 : : {
417 : : char *_p = (char *)p;
418 : :
419 : : #ifdef CONFIG_OUTER_CACHE
420 [ - + ][ - + ]: 8943522 : if (outer_cache.flush_range) {
[ - + - + ]
421 : : /*
422 : : * Ensure dirty data migrated from other CPUs into our cache
423 : : * are cleaned out safely before the outer cache is cleaned:
424 : : */
425 : 0 : __cpuc_clean_dcache_area(_p, size);
426 : :
427 : : /* Clean and invalidate stale data for *p from outer ... */
428 : 0 : outer_flush_range(__pa(_p), __pa(_p + size));
429 : : }
430 : : #endif
431 : :
432 : : /* ... and inner cache: */
433 : 8943522 : __cpuc_flush_dcache_area(_p, size);
434 : : }
435 : :
436 : : #define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr))
437 : : #define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr))
438 : :
439 : : /*
440 : : * Disabling cache access for one CPU in an ARMv7 SMP system is tricky.
441 : : * To do so we must:
442 : : *
443 : : * - Clear the SCTLR.C bit to prevent further cache allocations
444 : : * - Flush the desired level of cache
445 : : * - Clear the ACTLR "SMP" bit to disable local coherency
446 : : *
447 : : * ... and so without any intervening memory access in between those steps,
448 : : * not even to the stack.
449 : : *
450 : : * WARNING -- After this has been called:
451 : : *
452 : : * - No ldrex/strex (and similar) instructions must be used.
453 : : * - The CPU is obviously no longer coherent with the other CPUs.
454 : : * - This is unlikely to work as expected if Linux is running non-secure.
455 : : *
456 : : * Note:
457 : : *
458 : : * - This is known to apply to several ARMv7 processor implementations,
459 : : * however some exceptions may exist. Caveat emptor.
460 : : *
461 : : * - The clobber list is dictated by the call to v7_flush_dcache_*.
462 : : * fp is preserved to the stack explicitly prior disabling the cache
463 : : * since adding it to the clobber list is incompatible with having
464 : : * CONFIG_FRAME_POINTER=y. ip is saved as well if ever r12-clobbering
465 : : * trampoline are inserted by the linker and to keep sp 64-bit aligned.
466 : : */
467 : : #define v7_exit_coherency_flush(level) \
468 : : asm volatile( \
469 : : "stmfd sp!, {fp, ip} \n\t" \
470 : : "mrc p15, 0, r0, c1, c0, 0 @ get SCTLR \n\t" \
471 : : "bic r0, r0, #"__stringify(CR_C)" \n\t" \
472 : : "mcr p15, 0, r0, c1, c0, 0 @ set SCTLR \n\t" \
473 : : "isb \n\t" \
474 : : "bl v7_flush_dcache_"__stringify(level)" \n\t" \
475 : : "clrex \n\t" \
476 : : "mrc p15, 0, r0, c1, c0, 1 @ get ACTLR \n\t" \
477 : : "bic r0, r0, #(1 << 6) @ disable local coherency \n\t" \
478 : : "mcr p15, 0, r0, c1, c0, 1 @ set ACTLR \n\t" \
479 : : "isb \n\t" \
480 : : "dsb \n\t" \
481 : : "ldmfd sp!, {fp, ip}" \
482 : : : : : "r0","r1","r2","r3","r4","r5","r6","r7", \
483 : : "r9","r10","lr","memory" )
484 : :
485 : : int set_memory_ro(unsigned long addr, int numpages);
486 : : int set_memory_rw(unsigned long addr, int numpages);
487 : : int set_memory_x(unsigned long addr, int numpages);
488 : : int set_memory_nx(unsigned long addr, int numpages);
489 : :
490 : : #endif
|