Branch data Line data Source code
1 : : /*
2 : : * mm/percpu-vm.c - vmalloc area based chunk allocation
3 : : *
4 : : * Copyright (C) 2010 SUSE Linux Products GmbH
5 : : * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
6 : : *
7 : : * This file is released under the GPLv2.
8 : : *
9 : : * Chunks are mapped into vmalloc areas and populated page by page.
10 : : * This is the default chunk allocator.
11 : : */
12 : :
13 : 0 : static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
14 : : unsigned int cpu, int page_idx)
15 : : {
16 : : /* must not be used on pre-mapped chunk */
17 [ # # ]: 0 : WARN_ON(chunk->immutable);
18 : :
19 : 0 : return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
20 : : }
21 : :
22 : : /**
23 : : * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
24 : : * @chunk: chunk of interest
25 : : * @bitmapp: output parameter for bitmap
26 : : * @may_alloc: may allocate the array
27 : : *
28 : : * Returns pointer to array of pointers to struct page and bitmap,
29 : : * both of which can be indexed with pcpu_page_idx(). The returned
30 : : * array is cleared to zero and *@bitmapp is copied from
31 : : * @chunk->populated. Note that there is only one array and bitmap
32 : : * and access exclusion is the caller's responsibility.
33 : : *
34 : : * CONTEXT:
35 : : * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
36 : : * Otherwise, don't care.
37 : : *
38 : : * RETURNS:
39 : : * Pointer to temp pages array on success, NULL on failure.
40 : : */
41 : 0 : static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
42 : : unsigned long **bitmapp,
43 : : bool may_alloc)
44 : : {
45 : : static struct page **pages;
46 : : static unsigned long *bitmap;
47 : 0 : size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
48 : 0 : size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
49 : : sizeof(unsigned long);
50 : :
51 [ # # ][ # # ]: 0 : if (!pages || !bitmap) {
52 [ # # ][ # # ]: 0 : if (may_alloc && !pages)
53 : 0 : pages = pcpu_mem_zalloc(pages_size);
54 [ # # ][ # # ]: 0 : if (may_alloc && !bitmap)
55 : 0 : bitmap = pcpu_mem_zalloc(bitmap_size);
56 [ # # ][ # # ]: 0 : if (!pages || !bitmap)
57 : : return NULL;
58 : : }
59 : :
60 : 0 : bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
61 : :
62 : 0 : *bitmapp = bitmap;
63 : 0 : return pages;
64 : : }
65 : :
66 : : /**
67 : : * pcpu_free_pages - free pages which were allocated for @chunk
68 : : * @chunk: chunk pages were allocated for
69 : : * @pages: array of pages to be freed, indexed by pcpu_page_idx()
70 : : * @populated: populated bitmap
71 : : * @page_start: page index of the first page to be freed
72 : : * @page_end: page index of the last page to be freed + 1
73 : : *
74 : : * Free pages [@page_start and @page_end) in @pages for all units.
75 : : * The pages were allocated for @chunk.
76 : : */
77 : 0 : static void pcpu_free_pages(struct pcpu_chunk *chunk,
78 : : struct page **pages, unsigned long *populated,
79 : : int page_start, int page_end)
80 : : {
81 : : unsigned int cpu;
82 : : int i;
83 : :
84 [ # # ]: 0 : for_each_possible_cpu(cpu) {
85 [ # # ]: 0 : for (i = page_start; i < page_end; i++) {
86 : 0 : struct page *page = pages[pcpu_page_idx(cpu, i)];
87 : :
88 [ # # ]: 0 : if (page)
89 : 0 : __free_page(page);
90 : : }
91 : : }
92 : 0 : }
93 : :
94 : : /**
95 : : * pcpu_alloc_pages - allocates pages for @chunk
96 : : * @chunk: target chunk
97 : : * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
98 : : * @populated: populated bitmap
99 : : * @page_start: page index of the first page to be allocated
100 : : * @page_end: page index of the last page to be allocated + 1
101 : : *
102 : : * Allocate pages [@page_start,@page_end) into @pages for all units.
103 : : * The allocation is for @chunk. Percpu core doesn't care about the
104 : : * content of @pages and will pass it verbatim to pcpu_map_pages().
105 : : */
106 : 0 : static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
107 : : struct page **pages, unsigned long *populated,
108 : : int page_start, int page_end)
109 : : {
110 : : const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
111 : : unsigned int cpu;
112 : : int i;
113 : :
114 [ # # ]: 0 : for_each_possible_cpu(cpu) {
115 [ # # ]: 0 : for (i = page_start; i < page_end; i++) {
116 : 0 : struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
117 : :
118 : 0 : *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
119 [ # # ]: 0 : if (!*pagep) {
120 : 0 : pcpu_free_pages(chunk, pages, populated,
121 : : page_start, page_end);
122 : : return -ENOMEM;
123 : : }
124 : : }
125 : : }
126 : : return 0;
127 : : }
128 : :
129 : : /**
130 : : * pcpu_pre_unmap_flush - flush cache prior to unmapping
131 : : * @chunk: chunk the regions to be flushed belongs to
132 : : * @page_start: page index of the first page to be flushed
133 : : * @page_end: page index of the last page to be flushed + 1
134 : : *
135 : : * Pages in [@page_start,@page_end) of @chunk are about to be
136 : : * unmapped. Flush cache. As each flushing trial can be very
137 : : * expensive, issue flush on the whole region at once rather than
138 : : * doing it for each cpu. This could be an overkill but is more
139 : : * scalable.
140 : : */
141 : : static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
142 : : int page_start, int page_end)
143 : : {
144 : : flush_cache_vunmap(
145 : : pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
146 : : pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
147 : : }
148 : :
149 : : static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
150 : : {
151 : 0 : unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
152 : : }
153 : :
154 : : /**
155 : : * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
156 : : * @chunk: chunk of interest
157 : : * @pages: pages array which can be used to pass information to free
158 : : * @populated: populated bitmap
159 : : * @page_start: page index of the first page to unmap
160 : : * @page_end: page index of the last page to unmap + 1
161 : : *
162 : : * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
163 : : * Corresponding elements in @pages were cleared by the caller and can
164 : : * be used to carry information to pcpu_free_pages() which will be
165 : : * called after all unmaps are finished. The caller should call
166 : : * proper pre/post flush functions.
167 : : */
168 : 0 : static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
169 : : struct page **pages, unsigned long *populated,
170 : : int page_start, int page_end)
171 : : {
172 : : unsigned int cpu;
173 : : int i;
174 : :
175 [ # # ]: 0 : for_each_possible_cpu(cpu) {
176 [ # # ]: 0 : for (i = page_start; i < page_end; i++) {
177 : : struct page *page;
178 : :
179 : 0 : page = pcpu_chunk_page(chunk, cpu, i);
180 [ # # ]: 0 : WARN_ON(!page);
181 : 0 : pages[pcpu_page_idx(cpu, i)] = page;
182 : : }
183 : 0 : __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
184 : : page_end - page_start);
185 : : }
186 : :
187 : 0 : bitmap_clear(populated, page_start, page_end - page_start);
188 : 0 : }
189 : :
190 : : /**
191 : : * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
192 : : * @chunk: pcpu_chunk the regions to be flushed belong to
193 : : * @page_start: page index of the first page to be flushed
194 : : * @page_end: page index of the last page to be flushed + 1
195 : : *
196 : : * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
197 : : * TLB for the regions. This can be skipped if the area is to be
198 : : * returned to vmalloc as vmalloc will handle TLB flushing lazily.
199 : : *
200 : : * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
201 : : * for the whole region.
202 : : */
203 : 0 : static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
204 : : int page_start, int page_end)
205 : : {
206 : 0 : flush_tlb_kernel_range(
207 : : pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
208 : : pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
209 : 0 : }
210 : :
211 : : static int __pcpu_map_pages(unsigned long addr, struct page **pages,
212 : : int nr_pages)
213 : : {
214 : 0 : return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
215 : : PAGE_KERNEL, pages);
216 : : }
217 : :
218 : : /**
219 : : * pcpu_map_pages - map pages into a pcpu_chunk
220 : : * @chunk: chunk of interest
221 : : * @pages: pages array containing pages to be mapped
222 : : * @populated: populated bitmap
223 : : * @page_start: page index of the first page to map
224 : : * @page_end: page index of the last page to map + 1
225 : : *
226 : : * For each cpu, map pages [@page_start,@page_end) into @chunk. The
227 : : * caller is responsible for calling pcpu_post_map_flush() after all
228 : : * mappings are complete.
229 : : *
230 : : * This function is responsible for setting corresponding bits in
231 : : * @chunk->populated bitmap and whatever is necessary for reverse
232 : : * lookup (addr -> chunk).
233 : : */
234 : 0 : static int pcpu_map_pages(struct pcpu_chunk *chunk,
235 : : struct page **pages, unsigned long *populated,
236 : : int page_start, int page_end)
237 : : {
238 : : unsigned int cpu, tcpu;
239 : : int i, err;
240 : :
241 [ # # ]: 0 : for_each_possible_cpu(cpu) {
242 : 0 : err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
243 : 0 : &pages[pcpu_page_idx(cpu, page_start)],
244 : : page_end - page_start);
245 [ # # ]: 0 : if (err < 0)
246 : : goto err;
247 : : }
248 : :
249 : : /* mapping successful, link chunk and mark populated */
250 [ # # ]: 0 : for (i = page_start; i < page_end; i++) {
251 [ # # ]: 0 : for_each_possible_cpu(cpu)
252 : 0 : pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
253 : : chunk);
254 : : __set_bit(i, populated);
255 : : }
256 : :
257 : : return 0;
258 : :
259 : : err:
260 [ # # ]: 0 : for_each_possible_cpu(tcpu) {
261 [ # # ]: 0 : if (tcpu == cpu)
262 : : break;
263 : : __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
264 : : page_end - page_start);
265 : : }
266 : : return err;
267 : : }
268 : :
269 : : /**
270 : : * pcpu_post_map_flush - flush cache after mapping
271 : : * @chunk: pcpu_chunk the regions to be flushed belong to
272 : : * @page_start: page index of the first page to be flushed
273 : : * @page_end: page index of the last page to be flushed + 1
274 : : *
275 : : * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
276 : : * cache.
277 : : *
278 : : * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
279 : : * for the whole region.
280 : : */
281 : : static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
282 : : int page_start, int page_end)
283 : : {
284 : : flush_cache_vmap(
285 : : pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
286 : : pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
287 : : }
288 : :
289 : : /**
290 : : * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
291 : : * @chunk: chunk of interest
292 : : * @off: offset to the area to populate
293 : : * @size: size of the area to populate in bytes
294 : : *
295 : : * For each cpu, populate and map pages [@page_start,@page_end) into
296 : : * @chunk. The area is cleared on return.
297 : : *
298 : : * CONTEXT:
299 : : * pcpu_alloc_mutex, does GFP_KERNEL allocation.
300 : : */
301 : 0 : static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
302 : : {
303 : 6273 : int page_start = PFN_DOWN(off);
304 : 6273 : int page_end = PFN_UP(off + size);
305 : : int free_end = page_start, unmap_end = page_start;
306 : : struct page **pages;
307 : : unsigned long *populated;
308 : : unsigned int cpu;
309 : : int rs, re, rc;
310 : :
311 : : /* quick path, check whether all pages are already there */
312 : 6273 : rs = page_start;
313 : 6273 : pcpu_next_pop(chunk, &rs, &re, page_end);
314 [ + - ][ - + ]: 6273 : if (rs == page_start && re == page_end)
315 : : goto clear;
316 : :
317 : : /* need to allocate and map pages, this chunk can't be immutable */
318 [ # # ]: 0 : WARN_ON(chunk->immutable);
319 : :
320 : 0 : pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
321 [ # # ]: 0 : if (!pages)
322 : : return -ENOMEM;
323 : :
324 : : /* alloc and map */
325 [ # # ]: 0 : pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
326 : 0 : rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
327 [ # # ]: 0 : if (rc)
328 : : goto err_free;
329 : 0 : free_end = re;
330 : : }
331 : :
332 [ # # ]: 0 : pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
333 : 0 : rc = pcpu_map_pages(chunk, pages, populated, rs, re);
334 [ # # ]: 0 : if (rc)
335 : : goto err_unmap;
336 : 0 : unmap_end = re;
337 : : }
338 : : pcpu_post_map_flush(chunk, page_start, page_end);
339 : :
340 : : /* commit new bitmap */
341 : 0 : bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
342 : : clear:
343 [ + + ]: 37638 : for_each_possible_cpu(cpu)
344 [ + - ]: 31365 : memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
345 : : return 0;
346 : :
347 : : err_unmap:
348 : : pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
349 [ # # ]: 0 : pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
350 : 0 : pcpu_unmap_pages(chunk, pages, populated, rs, re);
351 : 0 : pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
352 : : err_free:
353 [ # # ]: 0 : pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
354 : 0 : pcpu_free_pages(chunk, pages, populated, rs, re);
355 : : return rc;
356 : : }
357 : :
358 : : /**
359 : : * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
360 : : * @chunk: chunk to depopulate
361 : : * @off: offset to the area to depopulate
362 : : * @size: size of the area to depopulate in bytes
363 : : *
364 : : * For each cpu, depopulate and unmap pages [@page_start,@page_end)
365 : : * from @chunk. If @flush is true, vcache is flushed before unmapping
366 : : * and tlb after.
367 : : *
368 : : * CONTEXT:
369 : : * pcpu_alloc_mutex.
370 : : */
371 : 0 : static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
372 : : {
373 : 0 : int page_start = PFN_DOWN(off);
374 : 0 : int page_end = PFN_UP(off + size);
375 : : struct page **pages;
376 : : unsigned long *populated;
377 : : int rs, re;
378 : :
379 : : /* quick path, check whether it's empty already */
380 : 0 : rs = page_start;
381 : 0 : pcpu_next_unpop(chunk, &rs, &re, page_end);
382 [ # # ][ # # ]: 0 : if (rs == page_start && re == page_end)
383 : 0 : return;
384 : :
385 : : /* immutable chunks can't be depopulated */
386 [ # # ]: 0 : WARN_ON(chunk->immutable);
387 : :
388 : : /*
389 : : * If control reaches here, there must have been at least one
390 : : * successful population attempt so the temp pages array must
391 : : * be available now.
392 : : */
393 : 0 : pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
394 [ # # ]: 0 : BUG_ON(!pages);
395 : :
396 : : /* unmap and free */
397 : : pcpu_pre_unmap_flush(chunk, page_start, page_end);
398 : :
399 [ # # ]: 0 : pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
400 : 0 : pcpu_unmap_pages(chunk, pages, populated, rs, re);
401 : :
402 : : /* no need to flush tlb, vmalloc will handle it lazily */
403 : :
404 [ # # ]: 0 : pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
405 : 0 : pcpu_free_pages(chunk, pages, populated, rs, re);
406 : :
407 : : /* commit new bitmap */
408 : 0 : bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
409 : : }
410 : :
411 : 0 : static struct pcpu_chunk *pcpu_create_chunk(void)
412 : : {
413 : : struct pcpu_chunk *chunk;
414 : : struct vm_struct **vms;
415 : :
416 : 0 : chunk = pcpu_alloc_chunk();
417 [ # # ]: 0 : if (!chunk)
418 : : return NULL;
419 : :
420 : 0 : vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
421 : : pcpu_nr_groups, pcpu_atom_size);
422 [ # # ]: 0 : if (!vms) {
423 : 0 : pcpu_free_chunk(chunk);
424 : 0 : return NULL;
425 : : }
426 : :
427 : 0 : chunk->data = vms;
428 : 0 : chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
429 : 0 : return chunk;
430 : : }
431 : :
432 : 0 : static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
433 : : {
434 [ # # ][ # # ]: 0 : if (chunk && chunk->data)
435 : 0 : pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
436 : 0 : pcpu_free_chunk(chunk);
437 : 0 : }
438 : :
439 : : static struct page *pcpu_addr_to_page(void *addr)
440 : : {
441 : 0 : return vmalloc_to_page(addr);
442 : : }
443 : :
444 : : static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
445 : : {
446 : : /* no extra restriction */
447 : : return 0;
448 : : }
|