Branch data Line data Source code
1 : : /* Generic associative array implementation.
2 : : *
3 : : * See Documentation/assoc_array.txt for information.
4 : : *
5 : : * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6 : : * Written by David Howells (dhowells@redhat.com)
7 : : *
8 : : * This program is free software; you can redistribute it and/or
9 : : * modify it under the terms of the GNU General Public Licence
10 : : * as published by the Free Software Foundation; either version
11 : : * 2 of the Licence, or (at your option) any later version.
12 : : */
13 : : //#define DEBUG
14 : : #include <linux/slab.h>
15 : : #include <linux/err.h>
16 : : #include <linux/assoc_array_priv.h>
17 : :
18 : : /*
19 : : * Iterate over an associative array. The caller must hold the RCU read lock
20 : : * or better.
21 : : */
22 : 0 : static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
23 : : const struct assoc_array_ptr *stop,
24 : : int (*iterator)(const void *leaf,
25 : : void *iterator_data),
26 : : void *iterator_data)
27 : : {
28 : : const struct assoc_array_shortcut *shortcut;
29 : : const struct assoc_array_node *node;
30 : : const struct assoc_array_ptr *cursor, *ptr, *parent;
31 : : unsigned long has_meta;
32 : : int slot, ret;
33 : :
34 : : cursor = root;
35 : :
36 : : begin_node:
37 [ # # ]: 0 : if (assoc_array_ptr_is_shortcut(cursor)) {
38 : : /* Descend through a shortcut */
39 : : shortcut = assoc_array_ptr_to_shortcut(cursor);
40 : : smp_read_barrier_depends();
41 : 0 : cursor = ACCESS_ONCE(shortcut->next_node);
42 : : }
43 : :
44 : : node = assoc_array_ptr_to_node(cursor);
45 : : smp_read_barrier_depends();
46 : : slot = 0;
47 : :
48 : : /* We perform two passes of each node.
49 : : *
50 : : * The first pass does all the leaves in this node. This means we
51 : : * don't miss any leaves if the node is split up by insertion whilst
52 : : * we're iterating over the branches rooted here (we may, however, see
53 : : * some leaves twice).
54 : : */
55 : : has_meta = 0;
56 [ # # ]: 0 : for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
57 : 0 : ptr = ACCESS_ONCE(node->slots[slot]);
58 : 0 : has_meta |= (unsigned long)ptr;
59 [ # # ][ # # ]: 0 : if (ptr && assoc_array_ptr_is_leaf(ptr)) {
60 : : /* We need a barrier between the read of the pointer
61 : : * and dereferencing the pointer - but only if we are
62 : : * actually going to dereference it.
63 : : */
64 : : smp_read_barrier_depends();
65 : :
66 : : /* Invoke the callback */
67 : 0 : ret = iterator(assoc_array_ptr_to_leaf(ptr),
68 : : iterator_data);
69 [ # # ]: 0 : if (ret)
70 : : return ret;
71 : : }
72 : : }
73 : :
74 : : /* The second pass attends to all the metadata pointers. If we follow
75 : : * one of these we may find that we don't come back here, but rather go
76 : : * back to a replacement node with the leaves in a different layout.
77 : : *
78 : : * We are guaranteed to make progress, however, as the slot number for
79 : : * a particular portion of the key space cannot change - and we
80 : : * continue at the back pointer + 1.
81 : : */
82 [ # # ]: 0 : if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
83 : : goto finished_node;
84 : : slot = 0;
85 : :
86 : : continue_node:
87 : : node = assoc_array_ptr_to_node(cursor);
88 : : smp_read_barrier_depends();
89 : :
90 [ # # ]: 0 : for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
91 : 0 : ptr = ACCESS_ONCE(node->slots[slot]);
92 [ # # ]: 0 : if (assoc_array_ptr_is_meta(ptr)) {
93 : : cursor = ptr;
94 : : goto begin_node;
95 : : }
96 : : }
97 : :
98 : : finished_node:
99 : : /* Move up to the parent (may need to skip back over a shortcut) */
100 : 0 : parent = ACCESS_ONCE(node->back_pointer);
101 : 0 : slot = node->parent_slot;
102 [ # # ]: 0 : if (parent == stop)
103 : : return 0;
104 : :
105 [ # # ]: 0 : if (assoc_array_ptr_is_shortcut(parent)) {
106 : : shortcut = assoc_array_ptr_to_shortcut(parent);
107 : : smp_read_barrier_depends();
108 : : cursor = parent;
109 : 0 : parent = ACCESS_ONCE(shortcut->back_pointer);
110 : 0 : slot = shortcut->parent_slot;
111 [ # # ]: 0 : if (parent == stop)
112 : : return 0;
113 : : }
114 : :
115 : : /* Ascend to next slot in parent node */
116 : : cursor = parent;
117 : 0 : slot++;
118 : 0 : goto continue_node;
119 : : }
120 : :
121 : : /**
122 : : * assoc_array_iterate - Pass all objects in the array to a callback
123 : : * @array: The array to iterate over.
124 : : * @iterator: The callback function.
125 : : * @iterator_data: Private data for the callback function.
126 : : *
127 : : * Iterate over all the objects in an associative array. Each one will be
128 : : * presented to the iterator function.
129 : : *
130 : : * If the array is being modified concurrently with the iteration then it is
131 : : * possible that some objects in the array will be passed to the iterator
132 : : * callback more than once - though every object should be passed at least
133 : : * once. If this is undesirable then the caller must lock against modification
134 : : * for the duration of this function.
135 : : *
136 : : * The function will return 0 if no objects were in the array or else it will
137 : : * return the result of the last iterator function called. Iteration stops
138 : : * immediately if any call to the iteration function results in a non-zero
139 : : * return.
140 : : *
141 : : * The caller should hold the RCU read lock or better if concurrent
142 : : * modification is possible.
143 : : */
144 : 0 : int assoc_array_iterate(const struct assoc_array *array,
145 : : int (*iterator)(const void *object,
146 : : void *iterator_data),
147 : : void *iterator_data)
148 : : {
149 : 0 : struct assoc_array_ptr *root = ACCESS_ONCE(array->root);
150 : :
151 [ # # ]: 0 : if (!root)
152 : : return 0;
153 : 0 : return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
154 : : }
155 : :
156 : : enum assoc_array_walk_status {
157 : : assoc_array_walk_tree_empty,
158 : : assoc_array_walk_found_terminal_node,
159 : : assoc_array_walk_found_wrong_shortcut,
160 : : } status;
161 : :
162 : : struct assoc_array_walk_result {
163 : : struct {
164 : : struct assoc_array_node *node; /* Node in which leaf might be found */
165 : : int level;
166 : : int slot;
167 : : } terminal_node;
168 : : struct {
169 : : struct assoc_array_shortcut *shortcut;
170 : : int level;
171 : : int sc_level;
172 : : unsigned long sc_segments;
173 : : unsigned long dissimilarity;
174 : : } wrong_shortcut;
175 : : };
176 : :
177 : : /*
178 : : * Navigate through the internal tree looking for the closest node to the key.
179 : : */
180 : : static enum assoc_array_walk_status
181 : 0 : assoc_array_walk(const struct assoc_array *array,
182 : : const struct assoc_array_ops *ops,
183 : : const void *index_key,
184 : : struct assoc_array_walk_result *result)
185 : : {
186 : : struct assoc_array_shortcut *shortcut;
187 : : struct assoc_array_node *node;
188 : : struct assoc_array_ptr *cursor, *ptr;
189 : : unsigned long sc_segments, dissimilarity;
190 : : unsigned long segments;
191 : : int level, sc_level, next_sc_level;
192 : : int slot;
193 : :
194 : : pr_devel("-->%s()\n", __func__);
195 : :
196 : 3 : cursor = ACCESS_ONCE(array->root);
197 [ - + ]: 3 : if (!cursor)
198 : : return assoc_array_walk_tree_empty;
199 : :
200 : : level = 0;
201 : :
202 : : /* Use segments from the key for the new leaf to navigate through the
203 : : * internal tree, skipping through nodes and shortcuts that are on
204 : : * route to the destination. Eventually we'll come to a slot that is
205 : : * either empty or contains a leaf at which point we've found a node in
206 : : * which the leaf we're looking for might be found or into which it
207 : : * should be inserted.
208 : : */
209 : : jumped:
210 : 0 : segments = ops->get_key_chunk(index_key, level);
211 : : pr_devel("segments[%d]: %lx\n", level, segments);
212 : :
213 [ # # ]: 0 : if (assoc_array_ptr_is_shortcut(cursor))
214 : : goto follow_shortcut;
215 : :
216 : : consider_node:
217 : : node = assoc_array_ptr_to_node(cursor);
218 : : smp_read_barrier_depends();
219 : :
220 : 0 : slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
221 : 0 : slot &= ASSOC_ARRAY_FAN_MASK;
222 : 0 : ptr = ACCESS_ONCE(node->slots[slot]);
223 : :
224 : : pr_devel("consider slot %x [ix=%d type=%lu]\n",
225 : : slot, level, (unsigned long)ptr & 3);
226 : :
227 [ # # ]: 0 : if (!assoc_array_ptr_is_meta(ptr)) {
228 : : /* The node doesn't have a node/shortcut pointer in the slot
229 : : * corresponding to the index key that we have to follow.
230 : : */
231 : 0 : result->terminal_node.node = node;
232 : 0 : result->terminal_node.level = level;
233 : 0 : result->terminal_node.slot = slot;
234 : : pr_devel("<--%s() = terminal_node\n", __func__);
235 : : return assoc_array_walk_found_terminal_node;
236 : : }
237 : :
238 [ # # ]: 0 : if (assoc_array_ptr_is_node(ptr)) {
239 : : /* There is a pointer to a node in the slot corresponding to
240 : : * this index key segment, so we need to follow it.
241 : : */
242 : : cursor = ptr;
243 : 0 : level += ASSOC_ARRAY_LEVEL_STEP;
244 [ # # ]: 0 : if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
245 : : goto consider_node;
246 : : goto jumped;
247 : : }
248 : :
249 : : /* There is a shortcut in the slot corresponding to the index key
250 : : * segment. We follow the shortcut if its partial index key matches
251 : : * this leaf's. Otherwise we need to split the shortcut.
252 : : */
253 : : cursor = ptr;
254 : : follow_shortcut:
255 : : shortcut = assoc_array_ptr_to_shortcut(cursor);
256 : : smp_read_barrier_depends();
257 : : pr_devel("shortcut to %d\n", shortcut->skip_to_level);
258 : 0 : sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
259 [ # # ]: 0 : BUG_ON(sc_level > shortcut->skip_to_level);
260 : :
261 : : do {
262 : : /* Check the leaf against the shortcut's index key a word at a
263 : : * time, trimming the final word (the shortcut stores the index
264 : : * key completely from the root to the shortcut's target).
265 : : */
266 [ # # ]: 0 : if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
267 : 0 : segments = ops->get_key_chunk(index_key, sc_level);
268 : :
269 : 0 : sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
270 : 0 : dissimilarity = segments ^ sc_segments;
271 : :
272 [ # # ]: 3 : if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
273 : : /* Trim segments that are beyond the shortcut */
274 : 0 : int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
275 : 0 : dissimilarity &= ~(ULONG_MAX << shift);
276 : : next_sc_level = shortcut->skip_to_level;
277 : : } else {
278 : 0 : next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
279 : 0 : next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
280 : : }
281 : :
282 [ # # ]: 0 : if (dissimilarity != 0) {
283 : : /* This shortcut points elsewhere */
284 : 0 : result->wrong_shortcut.shortcut = shortcut;
285 : 0 : result->wrong_shortcut.level = level;
286 : 0 : result->wrong_shortcut.sc_level = sc_level;
287 : 0 : result->wrong_shortcut.sc_segments = sc_segments;
288 : 0 : result->wrong_shortcut.dissimilarity = dissimilarity;
289 : : return assoc_array_walk_found_wrong_shortcut;
290 : : }
291 : :
292 : : sc_level = next_sc_level;
293 [ # # ]: 0 : } while (sc_level < shortcut->skip_to_level);
294 : :
295 : : /* The shortcut matches the leaf's index to this point. */
296 : 0 : cursor = ACCESS_ONCE(shortcut->next_node);
297 [ # # ]: 0 : if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
298 : : level = sc_level;
299 : : goto jumped;
300 : : } else {
301 : : level = sc_level;
302 : : goto consider_node;
303 : : }
304 : : }
305 : :
306 : : /**
307 : : * assoc_array_find - Find an object by index key
308 : : * @array: The associative array to search.
309 : : * @ops: The operations to use.
310 : : * @index_key: The key to the object.
311 : : *
312 : : * Find an object in an associative array by walking through the internal tree
313 : : * to the node that should contain the object and then searching the leaves
314 : : * there. NULL is returned if the requested object was not found in the array.
315 : : *
316 : : * The caller must hold the RCU read lock or better.
317 : : */
318 : 0 : void *assoc_array_find(const struct assoc_array *array,
319 : : const struct assoc_array_ops *ops,
320 : : const void *index_key)
321 : : {
322 : : struct assoc_array_walk_result result;
323 : : const struct assoc_array_node *node;
324 : : const struct assoc_array_ptr *ptr;
325 : : const void *leaf;
326 : : int slot;
327 : :
328 [ - + ]: 1 : if (assoc_array_walk(array, ops, index_key, &result) !=
329 : : assoc_array_walk_found_terminal_node)
330 : : return NULL;
331 : :
332 : 0 : node = result.terminal_node.node;
333 : : smp_read_barrier_depends();
334 : :
335 : : /* If the target key is available to us, it's has to be pointed to by
336 : : * the terminal node.
337 : : */
338 [ # # ]: 0 : for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
339 : 0 : ptr = ACCESS_ONCE(node->slots[slot]);
340 [ # # ][ # # ]: 0 : if (ptr && assoc_array_ptr_is_leaf(ptr)) {
341 : : /* We need a barrier between the read of the pointer
342 : : * and dereferencing the pointer - but only if we are
343 : : * actually going to dereference it.
344 : : */
345 : : leaf = assoc_array_ptr_to_leaf(ptr);
346 : : smp_read_barrier_depends();
347 [ # # ]: 0 : if (ops->compare_object(leaf, index_key))
348 : : return (void *)leaf;
349 : : }
350 : : }
351 : :
352 : : return NULL;
353 : : }
354 : :
355 : : /*
356 : : * Destructively iterate over an associative array. The caller must prevent
357 : : * other simultaneous accesses.
358 : : */
359 : 0 : static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
360 : : const struct assoc_array_ops *ops)
361 : : {
362 : : struct assoc_array_shortcut *shortcut;
363 : : struct assoc_array_node *node;
364 : : struct assoc_array_ptr *cursor, *parent = NULL;
365 : : int slot = -1;
366 : :
367 : : pr_devel("-->%s()\n", __func__);
368 : :
369 : : cursor = root;
370 [ + ]: 2 : if (!cursor) {
371 : : pr_devel("empty\n");
372 : : return;
373 : : }
374 : :
375 : : move_to_meta:
376 [ - + ]: 3 : if (assoc_array_ptr_is_shortcut(cursor)) {
377 : : /* Descend through a shortcut */
378 : : pr_devel("[%d] shortcut\n", slot);
379 [ # # ]: 0 : BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
380 : : shortcut = assoc_array_ptr_to_shortcut(cursor);
381 [ # # ]: 0 : BUG_ON(shortcut->back_pointer != parent);
382 [ # # ][ # # ]: 0 : BUG_ON(slot != -1 && shortcut->parent_slot != slot);
383 : : parent = cursor;
384 : 0 : cursor = shortcut->next_node;
385 : : slot = -1;
386 [ # # ]: 0 : BUG_ON(!assoc_array_ptr_is_node(cursor));
387 : : }
388 : :
389 : : pr_devel("[%d] node\n", slot);
390 : : node = assoc_array_ptr_to_node(cursor);
391 [ - + ]: 3 : BUG_ON(node->back_pointer != parent);
392 [ - + ][ # # ]: 1 : BUG_ON(slot != -1 && node->parent_slot != slot);
393 : : slot = 0;
394 : :
395 : : continue_node:
396 : : pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
397 [ + + ]: 17 : for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
398 : 16 : struct assoc_array_ptr *ptr = node->slots[slot];
399 [ + + ]: 16 : if (!ptr)
400 : 15 : continue;
401 [ - + ]: 1 : if (assoc_array_ptr_is_meta(ptr)) {
402 : : parent = cursor;
403 : : cursor = ptr;
404 : : goto move_to_meta;
405 : : }
406 : :
407 [ + - ]: 1 : if (ops) {
408 : : pr_devel("[%d] free leaf\n", slot);
409 : 1 : ops->free_object(assoc_array_ptr_to_leaf(ptr));
410 : : }
411 : : }
412 : :
413 : 1 : parent = node->back_pointer;
414 : 1 : slot = node->parent_slot;
415 : : pr_devel("free node\n");
416 : 1 : kfree(node);
417 [ - + ]: 1 : if (!parent)
418 : : return; /* Done */
419 : :
420 : : /* Move back up to the parent (may need to free a shortcut on
421 : : * the way up) */
422 [ # # ]: 0 : if (assoc_array_ptr_is_shortcut(parent)) {
423 : : shortcut = assoc_array_ptr_to_shortcut(parent);
424 [ # # ]: 0 : BUG_ON(shortcut->next_node != cursor);
425 : : cursor = parent;
426 : 0 : parent = shortcut->back_pointer;
427 : 0 : slot = shortcut->parent_slot;
428 : : pr_devel("free shortcut\n");
429 : 0 : kfree(shortcut);
430 [ # # ]: 0 : if (!parent)
431 : : return;
432 : :
433 [ # # ]: 0 : BUG_ON(!assoc_array_ptr_is_node(parent));
434 : : }
435 : :
436 : : /* Ascend to next slot in parent node */
437 : : pr_devel("ascend to %p[%d]\n", parent, slot);
438 : : cursor = parent;
439 : : node = assoc_array_ptr_to_node(cursor);
440 : 0 : slot++;
441 : 0 : goto continue_node;
442 : : }
443 : :
444 : : /**
445 : : * assoc_array_destroy - Destroy an associative array
446 : : * @array: The array to destroy.
447 : : * @ops: The operations to use.
448 : : *
449 : : * Discard all metadata and free all objects in an associative array. The
450 : : * array will be empty and ready to use again upon completion. This function
451 : : * cannot fail.
452 : : *
453 : : * The caller must prevent all other accesses whilst this takes place as no
454 : : * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
455 : : * accesses to continue. On the other hand, no memory allocation is required.
456 : : */
457 : 0 : void assoc_array_destroy(struct assoc_array *array,
458 : : const struct assoc_array_ops *ops)
459 : : {
460 : 2 : assoc_array_destroy_subtree(array->root, ops);
461 : 2 : array->root = NULL;
462 : 2 : }
463 : :
464 : : /*
465 : : * Handle insertion into an empty tree.
466 : : */
467 : 0 : static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
468 : : {
469 : : struct assoc_array_node *new_n0;
470 : :
471 : : pr_devel("-->%s()\n", __func__);
472 : :
473 : : new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
474 [ + - ]: 2 : if (!new_n0)
475 : : return false;
476 : :
477 : 2 : edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
478 : 2 : edit->leaf_p = &new_n0->slots[0];
479 : 2 : edit->adjust_count_on = new_n0;
480 : 2 : edit->set[0].ptr = &edit->array->root;
481 : 2 : edit->set[0].to = assoc_array_node_to_ptr(new_n0);
482 : :
483 : : pr_devel("<--%s() = ok [no root]\n", __func__);
484 : 2 : return true;
485 : : }
486 : :
487 : : /*
488 : : * Handle insertion into a terminal node.
489 : : */
490 : 0 : static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
491 : : const struct assoc_array_ops *ops,
492 : : const void *index_key,
493 : : struct assoc_array_walk_result *result)
494 : : {
495 : : struct assoc_array_shortcut *shortcut, *new_s0;
496 : : struct assoc_array_node *node, *new_n0, *new_n1, *side;
497 : : struct assoc_array_ptr *ptr;
498 : : unsigned long dissimilarity, base_seg, blank;
499 : : size_t keylen;
500 : : bool have_meta;
501 : : int level, diff;
502 : : int slot, next_slot, free_slot, i, j;
503 : :
504 : 0 : node = result->terminal_node.node;
505 : 0 : level = result->terminal_node.level;
506 : 0 : edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
507 : :
508 : : pr_devel("-->%s()\n", __func__);
509 : :
510 : : /* We arrived at a node which doesn't have an onward node or shortcut
511 : : * pointer that we have to follow. This means that (a) the leaf we
512 : : * want must go here (either by insertion or replacement) or (b) we
513 : : * need to split this node and insert in one of the fragments.
514 : : */
515 : : free_slot = -1;
516 : :
517 : : /* Firstly, we have to check the leaves in this node to see if there's
518 : : * a matching one we should replace in place.
519 : : */
520 [ # # ]: 0 : for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
521 : 0 : ptr = node->slots[i];
522 [ # # ]: 0 : if (!ptr) {
523 : : free_slot = i;
524 : 0 : continue;
525 : : }
526 [ # # ]: 0 : if (ops->compare_object(assoc_array_ptr_to_leaf(ptr), index_key)) {
527 : : pr_devel("replace in slot %d\n", i);
528 : 0 : edit->leaf_p = &node->slots[i];
529 : 0 : edit->dead_leaf = node->slots[i];
530 : : pr_devel("<--%s() = ok [replace]\n", __func__);
531 : 0 : return true;
532 : : }
533 : : }
534 : :
535 : : /* If there is a free slot in this node then we can just insert the
536 : : * leaf here.
537 : : */
538 [ # # ]: 0 : if (free_slot >= 0) {
539 : : pr_devel("insert in free slot %d\n", free_slot);
540 : 0 : edit->leaf_p = &node->slots[free_slot];
541 : 0 : edit->adjust_count_on = node;
542 : : pr_devel("<--%s() = ok [insert]\n", __func__);
543 : 0 : return true;
544 : : }
545 : :
546 : : /* The node has no spare slots - so we're either going to have to split
547 : : * it or insert another node before it.
548 : : *
549 : : * Whatever, we're going to need at least two new nodes - so allocate
550 : : * those now. We may also need a new shortcut, but we deal with that
551 : : * when we need it.
552 : : */
553 : : new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
554 [ # # ]: 0 : if (!new_n0)
555 : : return false;
556 : 0 : edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
557 : : new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
558 [ # # ]: 0 : if (!new_n1)
559 : : return false;
560 : 0 : edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
561 : :
562 : : /* We need to find out how similar the leaves are. */
563 : : pr_devel("no spare slots\n");
564 : : have_meta = false;
565 [ # # ]: 0 : for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
566 : 0 : ptr = node->slots[i];
567 [ # # ]: 0 : if (assoc_array_ptr_is_meta(ptr)) {
568 : 0 : edit->segment_cache[i] = 0xff;
569 : : have_meta = true;
570 : 0 : continue;
571 : : }
572 : 0 : base_seg = ops->get_object_key_chunk(
573 : : assoc_array_ptr_to_leaf(ptr), level);
574 : 0 : base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
575 : 0 : edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
576 : : }
577 : :
578 [ # # ]: 0 : if (have_meta) {
579 : : pr_devel("have meta\n");
580 : : goto split_node;
581 : : }
582 : :
583 : : /* The node contains only leaves */
584 : : dissimilarity = 0;
585 : 0 : base_seg = edit->segment_cache[0];
586 [ # # ]: 0 : for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
587 : 0 : dissimilarity |= edit->segment_cache[i] ^ base_seg;
588 : :
589 : : pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
590 : :
591 [ # # ]: 0 : if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
592 : : /* The old leaves all cluster in the same slot. We will need
593 : : * to insert a shortcut if the new node wants to cluster with them.
594 : : */
595 [ # # ]: 0 : if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
596 : : goto all_leaves_cluster_together;
597 : :
598 : : /* Otherwise we can just insert a new node ahead of the old
599 : : * one.
600 : : */
601 : : goto present_leaves_cluster_but_not_new_leaf;
602 : : }
603 : :
604 : : split_node:
605 : : pr_devel("split node\n");
606 : :
607 : : /* We need to split the current node; we know that the node doesn't
608 : : * simply contain a full set of leaves that cluster together (it
609 : : * contains meta pointers and/or non-clustering leaves).
610 : : *
611 : : * We need to expel at least two leaves out of a set consisting of the
612 : : * leaves in the node and the new leaf.
613 : : *
614 : : * We need a new node (n0) to replace the current one and a new node to
615 : : * take the expelled nodes (n1).
616 : : */
617 : 0 : edit->set[0].to = assoc_array_node_to_ptr(new_n0);
618 : 0 : new_n0->back_pointer = node->back_pointer;
619 : 0 : new_n0->parent_slot = node->parent_slot;
620 : 0 : new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
621 : 0 : new_n1->parent_slot = -1; /* Need to calculate this */
622 : :
623 : : do_split_node:
624 : : pr_devel("do_split_node\n");
625 : :
626 : 0 : new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
627 : 0 : new_n1->nr_leaves_on_branch = 0;
628 : :
629 : : /* Begin by finding two matching leaves. There have to be at least two
630 : : * that match - even if there are meta pointers - because any leaf that
631 : : * would match a slot with a meta pointer in it must be somewhere
632 : : * behind that meta pointer and cannot be here. Further, given N
633 : : * remaining leaf slots, we now have N+1 leaves to go in them.
634 : : */
635 [ # # ]: 0 : for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
636 : 0 : slot = edit->segment_cache[i];
637 [ # # ]: 0 : if (slot != 0xff)
638 [ # # ]: 0 : for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
639 [ # # ]: 0 : if (edit->segment_cache[j] == slot)
640 : : goto found_slot_for_multiple_occupancy;
641 : : }
642 : : found_slot_for_multiple_occupancy:
643 : : pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
644 [ # # ]: 0 : BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
645 [ # # ]: 0 : BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
646 [ # # ]: 0 : BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
647 : :
648 : 0 : new_n1->parent_slot = slot;
649 : :
650 : : /* Metadata pointers cannot change slot */
651 [ # # ]: 0 : for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
652 [ # # ]: 0 : if (assoc_array_ptr_is_meta(node->slots[i]))
653 : 0 : new_n0->slots[i] = node->slots[i];
654 : : else
655 : 0 : new_n0->slots[i] = NULL;
656 [ # # ]: 0 : BUG_ON(new_n0->slots[slot] != NULL);
657 : 0 : new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
658 : :
659 : : /* Filter the leaf pointers between the new nodes */
660 : : free_slot = -1;
661 : : next_slot = 0;
662 [ # # ]: 0 : for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
663 [ # # ]: 0 : if (assoc_array_ptr_is_meta(node->slots[i]))
664 : 0 : continue;
665 [ # # ]: 0 : if (edit->segment_cache[i] == slot) {
666 : 0 : new_n1->slots[next_slot++] = node->slots[i];
667 : 0 : new_n1->nr_leaves_on_branch++;
668 : : } else {
669 : : do {
670 : 0 : free_slot++;
671 [ # # ]: 0 : } while (new_n0->slots[free_slot] != NULL);
672 : 0 : new_n0->slots[free_slot] = node->slots[i];
673 : : }
674 : : }
675 : :
676 : : pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
677 : :
678 [ # # ]: 0 : if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
679 : : do {
680 : 0 : free_slot++;
681 [ # # ]: 0 : } while (new_n0->slots[free_slot] != NULL);
682 : 0 : edit->leaf_p = &new_n0->slots[free_slot];
683 : 0 : edit->adjust_count_on = new_n0;
684 : : } else {
685 : 0 : edit->leaf_p = &new_n1->slots[next_slot++];
686 : 0 : edit->adjust_count_on = new_n1;
687 : : }
688 : :
689 [ # # ]: 0 : BUG_ON(next_slot <= 1);
690 : :
691 : 0 : edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
692 [ # # ]: 0 : for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
693 [ # # ]: 0 : if (edit->segment_cache[i] == 0xff) {
694 : 0 : ptr = node->slots[i];
695 [ # # ]: 0 : BUG_ON(assoc_array_ptr_is_leaf(ptr));
696 [ # # ]: 0 : if (assoc_array_ptr_is_node(ptr)) {
697 : : side = assoc_array_ptr_to_node(ptr);
698 : 0 : edit->set_backpointers[i] = &side->back_pointer;
699 : : } else {
700 : : shortcut = assoc_array_ptr_to_shortcut(ptr);
701 : 0 : edit->set_backpointers[i] = &shortcut->back_pointer;
702 : : }
703 : : }
704 : : }
705 : :
706 : 0 : ptr = node->back_pointer;
707 [ # # ]: 0 : if (!ptr)
708 : 0 : edit->set[0].ptr = &edit->array->root;
709 [ # # ]: 0 : else if (assoc_array_ptr_is_node(ptr))
710 : 0 : edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
711 : : else
712 : 0 : edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
713 : 0 : edit->excised_meta[0] = assoc_array_node_to_ptr(node);
714 : : pr_devel("<--%s() = ok [split node]\n", __func__);
715 : 0 : return true;
716 : :
717 : : present_leaves_cluster_but_not_new_leaf:
718 : : /* All the old leaves cluster in the same slot, but the new leaf wants
719 : : * to go into a different slot, so we create a new node to hold the new
720 : : * leaf and a pointer to a new node holding all the old leaves.
721 : : */
722 : : pr_devel("present leaves cluster but not new leaf\n");
723 : :
724 : 0 : new_n0->back_pointer = node->back_pointer;
725 : 0 : new_n0->parent_slot = node->parent_slot;
726 : 0 : new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
727 : 0 : new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
728 : 0 : new_n1->parent_slot = edit->segment_cache[0];
729 : 0 : new_n1->nr_leaves_on_branch = node->nr_leaves_on_branch;
730 : 0 : edit->adjust_count_on = new_n0;
731 : :
732 [ # # ]: 0 : for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
733 : 0 : new_n1->slots[i] = node->slots[i];
734 : :
735 : 0 : new_n0->slots[edit->segment_cache[0]] = assoc_array_node_to_ptr(new_n0);
736 : 0 : edit->leaf_p = &new_n0->slots[edit->segment_cache[ASSOC_ARRAY_FAN_OUT]];
737 : :
738 : 0 : edit->set[0].ptr = &assoc_array_ptr_to_node(node->back_pointer)->slots[node->parent_slot];
739 : 0 : edit->set[0].to = assoc_array_node_to_ptr(new_n0);
740 : 0 : edit->excised_meta[0] = assoc_array_node_to_ptr(node);
741 : : pr_devel("<--%s() = ok [insert node before]\n", __func__);
742 : 0 : return true;
743 : :
744 : : all_leaves_cluster_together:
745 : : /* All the leaves, new and old, want to cluster together in this node
746 : : * in the same slot, so we have to replace this node with a shortcut to
747 : : * skip over the identical parts of the key and then place a pair of
748 : : * nodes, one inside the other, at the end of the shortcut and
749 : : * distribute the keys between them.
750 : : *
751 : : * Firstly we need to work out where the leaves start diverging as a
752 : : * bit position into their keys so that we know how big the shortcut
753 : : * needs to be.
754 : : *
755 : : * We only need to make a single pass of N of the N+1 leaves because if
756 : : * any keys differ between themselves at bit X then at least one of
757 : : * them must also differ with the base key at bit X or before.
758 : : */
759 : : pr_devel("all leaves cluster together\n");
760 : : diff = INT_MAX;
761 [ # # ]: 0 : for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
762 : 0 : int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
763 : : index_key);
764 [ # # ]: 0 : if (x < diff) {
765 [ # # ]: 0 : BUG_ON(x < 0);
766 : : diff = x;
767 : : }
768 : : }
769 [ # # ]: 0 : BUG_ON(diff == INT_MAX);
770 [ # # ]: 0 : BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
771 : :
772 : 0 : keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
773 : 0 : keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
774 : :
775 : 0 : new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
776 : : keylen * sizeof(unsigned long), GFP_KERNEL);
777 [ # # ]: 0 : if (!new_s0)
778 : : return false;
779 : 0 : edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
780 : :
781 : 0 : edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
782 : 0 : new_s0->back_pointer = node->back_pointer;
783 : 0 : new_s0->parent_slot = node->parent_slot;
784 : 0 : new_s0->next_node = assoc_array_node_to_ptr(new_n0);
785 : 0 : new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
786 : 0 : new_n0->parent_slot = 0;
787 : 0 : new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
788 : 0 : new_n1->parent_slot = -1; /* Need to calculate this */
789 : :
790 : 0 : new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
791 : : pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
792 [ # # ]: 0 : BUG_ON(level <= 0);
793 : :
794 [ # # ]: 0 : for (i = 0; i < keylen; i++)
795 : 0 : new_s0->index_key[i] =
796 : 0 : ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
797 : :
798 : 0 : blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
799 : : pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
800 : 0 : new_s0->index_key[keylen - 1] &= ~blank;
801 : :
802 : : /* This now reduces to a node splitting exercise for which we'll need
803 : : * to regenerate the disparity table.
804 : : */
805 [ # # ]: 0 : for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
806 : 0 : ptr = node->slots[i];
807 : 0 : base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
808 : : level);
809 : 0 : base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
810 : 0 : edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
811 : : }
812 : :
813 : 0 : base_seg = ops->get_key_chunk(index_key, level);
814 : 0 : base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
815 : 0 : edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
816 : 0 : goto do_split_node;
817 : : }
818 : :
819 : : /*
820 : : * Handle insertion into the middle of a shortcut.
821 : : */
822 : 0 : static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
823 : : const struct assoc_array_ops *ops,
824 : : struct assoc_array_walk_result *result)
825 : : {
826 : : struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
827 : : struct assoc_array_node *node, *new_n0, *side;
828 : : unsigned long sc_segments, dissimilarity, blank;
829 : : size_t keylen;
830 : : int level, sc_level, diff;
831 : : int sc_slot;
832 : :
833 : 0 : shortcut = result->wrong_shortcut.shortcut;
834 : 0 : level = result->wrong_shortcut.level;
835 : 0 : sc_level = result->wrong_shortcut.sc_level;
836 : 0 : sc_segments = result->wrong_shortcut.sc_segments;
837 : 0 : dissimilarity = result->wrong_shortcut.dissimilarity;
838 : :
839 : : pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
840 : : __func__, level, dissimilarity, sc_level);
841 : :
842 : : /* We need to split a shortcut and insert a node between the two
843 : : * pieces. Zero-length pieces will be dispensed with entirely.
844 : : *
845 : : * First of all, we need to find out in which level the first
846 : : * difference was.
847 : : */
848 : 0 : diff = __ffs(dissimilarity);
849 : 0 : diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
850 : 0 : diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
851 : : pr_devel("diff=%d\n", diff);
852 : :
853 [ # # ]: 0 : if (!shortcut->back_pointer) {
854 : 0 : edit->set[0].ptr = &edit->array->root;
855 [ # # ]: 0 : } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
856 : : node = assoc_array_ptr_to_node(shortcut->back_pointer);
857 : 0 : edit->set[0].ptr = &node->slots[shortcut->parent_slot];
858 : : } else {
859 : 0 : BUG();
860 : : }
861 : :
862 : 0 : edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
863 : :
864 : : /* Create a new node now since we're going to need it anyway */
865 : : new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
866 [ # # ]: 0 : if (!new_n0)
867 : : return false;
868 : 0 : edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
869 : 0 : edit->adjust_count_on = new_n0;
870 : :
871 : : /* Insert a new shortcut before the new node if this segment isn't of
872 : : * zero length - otherwise we just connect the new node directly to the
873 : : * parent.
874 : : */
875 : 0 : level += ASSOC_ARRAY_LEVEL_STEP;
876 [ # # ]: 0 : if (diff > level) {
877 : : pr_devel("pre-shortcut %d...%d\n", level, diff);
878 : 0 : keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
879 : 0 : keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
880 : :
881 : 0 : new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
882 : : keylen * sizeof(unsigned long), GFP_KERNEL);
883 [ # # ]: 0 : if (!new_s0)
884 : : return false;
885 : 0 : edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
886 : 0 : edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
887 : 0 : new_s0->back_pointer = shortcut->back_pointer;
888 : 0 : new_s0->parent_slot = shortcut->parent_slot;
889 : 0 : new_s0->next_node = assoc_array_node_to_ptr(new_n0);
890 : 0 : new_s0->skip_to_level = diff;
891 : :
892 : 0 : new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
893 : 0 : new_n0->parent_slot = 0;
894 : :
895 : 0 : memcpy(new_s0->index_key, shortcut->index_key,
896 : : keylen * sizeof(unsigned long));
897 : :
898 : 0 : blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
899 : : pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
900 : 0 : new_s0->index_key[keylen - 1] &= ~blank;
901 : : } else {
902 : : pr_devel("no pre-shortcut\n");
903 : 0 : edit->set[0].to = assoc_array_node_to_ptr(new_n0);
904 : 0 : new_n0->back_pointer = shortcut->back_pointer;
905 : 0 : new_n0->parent_slot = shortcut->parent_slot;
906 : : }
907 : :
908 : 0 : side = assoc_array_ptr_to_node(shortcut->next_node);
909 : 0 : new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
910 : :
911 : : /* We need to know which slot in the new node is going to take a
912 : : * metadata pointer.
913 : : */
914 : 0 : sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
915 : 0 : sc_slot &= ASSOC_ARRAY_FAN_MASK;
916 : :
917 : : pr_devel("new slot %lx >> %d -> %d\n",
918 : : sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
919 : :
920 : : /* Determine whether we need to follow the new node with a replacement
921 : : * for the current shortcut. We could in theory reuse the current
922 : : * shortcut if its parent slot number doesn't change - but that's a
923 : : * 1-in-16 chance so not worth expending the code upon.
924 : : */
925 : 0 : level = diff + ASSOC_ARRAY_LEVEL_STEP;
926 [ # # ]: 0 : if (level < shortcut->skip_to_level) {
927 : : pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
928 : 0 : keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
929 : 0 : keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
930 : :
931 : 0 : new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
932 : : keylen * sizeof(unsigned long), GFP_KERNEL);
933 [ # # ]: 0 : if (!new_s1)
934 : : return false;
935 : 0 : edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
936 : :
937 : 0 : new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
938 : 0 : new_s1->parent_slot = sc_slot;
939 : 0 : new_s1->next_node = shortcut->next_node;
940 : 0 : new_s1->skip_to_level = shortcut->skip_to_level;
941 : :
942 : 0 : new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
943 : :
944 : 0 : memcpy(new_s1->index_key, shortcut->index_key,
945 : : keylen * sizeof(unsigned long));
946 : :
947 : 0 : edit->set[1].ptr = &side->back_pointer;
948 : 0 : edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
949 : : } else {
950 : : pr_devel("no post-shortcut\n");
951 : :
952 : : /* We don't have to replace the pointed-to node as long as we
953 : : * use memory barriers to make sure the parent slot number is
954 : : * changed before the back pointer (the parent slot number is
955 : : * irrelevant to the old parent shortcut).
956 : : */
957 : 0 : new_n0->slots[sc_slot] = shortcut->next_node;
958 : 0 : edit->set_parent_slot[0].p = &side->parent_slot;
959 : 0 : edit->set_parent_slot[0].to = sc_slot;
960 : 0 : edit->set[1].ptr = &side->back_pointer;
961 : 0 : edit->set[1].to = assoc_array_node_to_ptr(new_n0);
962 : : }
963 : :
964 : : /* Install the new leaf in a spare slot in the new node. */
965 [ # # ]: 0 : if (sc_slot == 0)
966 : 0 : edit->leaf_p = &new_n0->slots[1];
967 : : else
968 : 0 : edit->leaf_p = &new_n0->slots[0];
969 : :
970 : : pr_devel("<--%s() = ok [split shortcut]\n", __func__);
971 : 0 : return edit;
972 : : }
973 : :
974 : : /**
975 : : * assoc_array_insert - Script insertion of an object into an associative array
976 : : * @array: The array to insert into.
977 : : * @ops: The operations to use.
978 : : * @index_key: The key to insert at.
979 : : * @object: The object to insert.
980 : : *
981 : : * Precalculate and preallocate a script for the insertion or replacement of an
982 : : * object in an associative array. This results in an edit script that can
983 : : * either be applied or cancelled.
984 : : *
985 : : * The function returns a pointer to an edit script or -ENOMEM.
986 : : *
987 : : * The caller should lock against other modifications and must continue to hold
988 : : * the lock until assoc_array_apply_edit() has been called.
989 : : *
990 : : * Accesses to the tree may take place concurrently with this function,
991 : : * provided they hold the RCU read lock.
992 : : */
993 : 0 : struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
994 : : const struct assoc_array_ops *ops,
995 : : const void *index_key,
996 : : void *object)
997 : : {
998 : : struct assoc_array_walk_result result;
999 : : struct assoc_array_edit *edit;
1000 : :
1001 : : pr_devel("-->%s()\n", __func__);
1002 : :
1003 : : /* The leaf pointer we're given must not have the bottom bit set as we
1004 : : * use those for type-marking the pointer. NULL pointers are also not
1005 : : * allowed as they indicate an empty slot but we have to allow them
1006 : : * here as they can be updated later.
1007 : : */
1008 [ - + ]: 2 : BUG_ON(assoc_array_ptr_is_meta(object));
1009 : :
1010 : : edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1011 [ + - ]: 2 : if (!edit)
1012 : : return ERR_PTR(-ENOMEM);
1013 : 2 : edit->array = array;
1014 : 2 : edit->ops = ops;
1015 : 2 : edit->leaf = assoc_array_leaf_to_ptr(object);
1016 : 2 : edit->adjust_count_by = 1;
1017 : :
1018 [ + - - - ]: 2 : switch (assoc_array_walk(array, ops, index_key, &result)) {
1019 : : case assoc_array_walk_tree_empty:
1020 : : /* Allocate a root node if there isn't one yet */
1021 [ - + ]: 2 : if (!assoc_array_insert_in_empty_tree(edit))
1022 : : goto enomem;
1023 : : return edit;
1024 : :
1025 : : case assoc_array_walk_found_terminal_node:
1026 : : /* We found a node that doesn't have a node/shortcut pointer in
1027 : : * the slot corresponding to the index key that we have to
1028 : : * follow.
1029 : : */
1030 [ # # ]: 0 : if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1031 : : &result))
1032 : : goto enomem;
1033 : : return edit;
1034 : :
1035 : : case assoc_array_walk_found_wrong_shortcut:
1036 : : /* We found a shortcut that didn't match our key in a slot we
1037 : : * needed to follow.
1038 : : */
1039 [ # # ]: 0 : if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1040 : : goto enomem;
1041 : : return edit;
1042 : : }
1043 : :
1044 : : enomem:
1045 : : /* Clean up after an out of memory error */
1046 : : pr_devel("enomem\n");
1047 : 0 : assoc_array_cancel_edit(edit);
1048 : 0 : return ERR_PTR(-ENOMEM);
1049 : : }
1050 : :
1051 : : /**
1052 : : * assoc_array_insert_set_object - Set the new object pointer in an edit script
1053 : : * @edit: The edit script to modify.
1054 : : * @object: The object pointer to set.
1055 : : *
1056 : : * Change the object to be inserted in an edit script. The object pointed to
1057 : : * by the old object is not freed. This must be done prior to applying the
1058 : : * script.
1059 : : */
1060 : 0 : void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1061 : : {
1062 [ - + ]: 1 : BUG_ON(!object);
1063 : 1 : edit->leaf = assoc_array_leaf_to_ptr(object);
1064 : 1 : }
1065 : :
1066 : : struct assoc_array_delete_collapse_context {
1067 : : struct assoc_array_node *node;
1068 : : const void *skip_leaf;
1069 : : int slot;
1070 : : };
1071 : :
1072 : : /*
1073 : : * Subtree collapse to node iterator.
1074 : : */
1075 : 0 : static int assoc_array_delete_collapse_iterator(const void *leaf,
1076 : : void *iterator_data)
1077 : : {
1078 : : struct assoc_array_delete_collapse_context *collapse = iterator_data;
1079 : :
1080 [ # # ]: 0 : if (leaf == collapse->skip_leaf)
1081 : : return 0;
1082 : :
1083 [ # # ]: 0 : BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1084 : :
1085 : 0 : collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1086 : 0 : return 0;
1087 : : }
1088 : :
1089 : : /**
1090 : : * assoc_array_delete - Script deletion of an object from an associative array
1091 : : * @array: The array to search.
1092 : : * @ops: The operations to use.
1093 : : * @index_key: The key to the object.
1094 : : *
1095 : : * Precalculate and preallocate a script for the deletion of an object from an
1096 : : * associative array. This results in an edit script that can either be
1097 : : * applied or cancelled.
1098 : : *
1099 : : * The function returns a pointer to an edit script if the object was found,
1100 : : * NULL if the object was not found or -ENOMEM.
1101 : : *
1102 : : * The caller should lock against other modifications and must continue to hold
1103 : : * the lock until assoc_array_apply_edit() has been called.
1104 : : *
1105 : : * Accesses to the tree may take place concurrently with this function,
1106 : : * provided they hold the RCU read lock.
1107 : : */
1108 : 0 : struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1109 : : const struct assoc_array_ops *ops,
1110 : : const void *index_key)
1111 : : {
1112 : : struct assoc_array_delete_collapse_context collapse;
1113 : : struct assoc_array_walk_result result;
1114 : : struct assoc_array_node *node, *new_n0;
1115 : : struct assoc_array_edit *edit;
1116 : : struct assoc_array_ptr *ptr;
1117 : : bool has_meta;
1118 : : int slot, i;
1119 : :
1120 : : pr_devel("-->%s()\n", __func__);
1121 : :
1122 : : edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1123 [ # # ]: 0 : if (!edit)
1124 : : return ERR_PTR(-ENOMEM);
1125 : 0 : edit->array = array;
1126 : 0 : edit->ops = ops;
1127 : 0 : edit->adjust_count_by = -1;
1128 : :
1129 [ # # ]: 0 : switch (assoc_array_walk(array, ops, index_key, &result)) {
1130 : : case assoc_array_walk_found_terminal_node:
1131 : : /* We found a node that should contain the leaf we've been
1132 : : * asked to remove - *if* it's in the tree.
1133 : : */
1134 : : pr_devel("terminal_node\n");
1135 : 0 : node = result.terminal_node.node;
1136 : :
1137 [ # # ]: 0 : for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1138 : 0 : ptr = node->slots[slot];
1139 [ # # ][ # # ]: 0 : if (ptr &&
1140 [ # # ]: 0 : assoc_array_ptr_is_leaf(ptr) &&
1141 : 0 : ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1142 : : index_key))
1143 : : goto found_leaf;
1144 : : }
1145 : : case assoc_array_walk_tree_empty:
1146 : : case assoc_array_walk_found_wrong_shortcut:
1147 : : default:
1148 : 0 : assoc_array_cancel_edit(edit);
1149 : : pr_devel("not found\n");
1150 : 0 : return NULL;
1151 : : }
1152 : :
1153 : : found_leaf:
1154 [ # # ]: 0 : BUG_ON(array->nr_leaves_on_tree <= 0);
1155 : :
1156 : : /* In the simplest form of deletion we just clear the slot and release
1157 : : * the leaf after a suitable interval.
1158 : : */
1159 : 0 : edit->dead_leaf = node->slots[slot];
1160 : 0 : edit->set[0].ptr = &node->slots[slot];
1161 : 0 : edit->set[0].to = NULL;
1162 : 0 : edit->adjust_count_on = node;
1163 : :
1164 : : /* If that concludes erasure of the last leaf, then delete the entire
1165 : : * internal array.
1166 : : */
1167 [ # # ]: 0 : if (array->nr_leaves_on_tree == 1) {
1168 : 0 : edit->set[1].ptr = &array->root;
1169 : 0 : edit->set[1].to = NULL;
1170 : 0 : edit->adjust_count_on = NULL;
1171 : 0 : edit->excised_subtree = array->root;
1172 : : pr_devel("all gone\n");
1173 : 0 : return edit;
1174 : : }
1175 : :
1176 : : /* However, we'd also like to clear up some metadata blocks if we
1177 : : * possibly can.
1178 : : *
1179 : : * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1180 : : * leaves in it, then attempt to collapse it - and attempt to
1181 : : * recursively collapse up the tree.
1182 : : *
1183 : : * We could also try and collapse in partially filled subtrees to take
1184 : : * up space in this node.
1185 : : */
1186 [ # # ]: 0 : if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1187 : : struct assoc_array_node *parent, *grandparent;
1188 : : struct assoc_array_ptr *ptr;
1189 : :
1190 : : /* First of all, we need to know if this node has metadata so
1191 : : * that we don't try collapsing if all the leaves are already
1192 : : * here.
1193 : : */
1194 : : has_meta = false;
1195 [ # # ]: 0 : for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1196 : 0 : ptr = node->slots[i];
1197 [ # # ]: 0 : if (assoc_array_ptr_is_meta(ptr)) {
1198 : : has_meta = true;
1199 : : break;
1200 : : }
1201 : : }
1202 : :
1203 : : pr_devel("leaves: %ld [m=%d]\n",
1204 : : node->nr_leaves_on_branch - 1, has_meta);
1205 : :
1206 : : /* Look further up the tree to see if we can collapse this node
1207 : : * into a more proximal node too.
1208 : : */
1209 : : parent = node;
1210 : : collapse_up:
1211 : : pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1212 : :
1213 : 0 : ptr = parent->back_pointer;
1214 [ # # ]: 0 : if (!ptr)
1215 : : goto do_collapse;
1216 [ # # ]: 0 : if (assoc_array_ptr_is_shortcut(ptr)) {
1217 : : struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1218 : 0 : ptr = s->back_pointer;
1219 [ # # ]: 0 : if (!ptr)
1220 : : goto do_collapse;
1221 : : }
1222 : :
1223 : : grandparent = assoc_array_ptr_to_node(ptr);
1224 [ # # ]: 0 : if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1225 : : parent = grandparent;
1226 : : goto collapse_up;
1227 : : }
1228 : :
1229 : : do_collapse:
1230 : : /* There's no point collapsing if the original node has no meta
1231 : : * pointers to discard and if we didn't merge into one of that
1232 : : * node's ancestry.
1233 : : */
1234 [ # # ]: 0 : if (has_meta || parent != node) {
1235 : : node = parent;
1236 : :
1237 : : /* Create a new node to collapse into */
1238 : : new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1239 [ # # ]: 0 : if (!new_n0)
1240 : : goto enomem;
1241 : 0 : edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1242 : :
1243 : 0 : new_n0->back_pointer = node->back_pointer;
1244 : 0 : new_n0->parent_slot = node->parent_slot;
1245 : 0 : new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1246 : 0 : edit->adjust_count_on = new_n0;
1247 : :
1248 : 0 : collapse.node = new_n0;
1249 : 0 : collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1250 : 0 : collapse.slot = 0;
1251 : 0 : assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1252 : 0 : node->back_pointer,
1253 : : assoc_array_delete_collapse_iterator,
1254 : : &collapse);
1255 : : pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1256 [ # # ]: 0 : BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1257 : :
1258 [ # # ]: 0 : if (!node->back_pointer) {
1259 : 0 : edit->set[1].ptr = &array->root;
1260 [ # # ]: 0 : } else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1261 : 0 : BUG();
1262 [ # # ]: 0 : } else if (assoc_array_ptr_is_node(node->back_pointer)) {
1263 : : struct assoc_array_node *p =
1264 : : assoc_array_ptr_to_node(node->back_pointer);
1265 : 0 : edit->set[1].ptr = &p->slots[node->parent_slot];
1266 [ # # ]: 0 : } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1267 : : struct assoc_array_shortcut *s =
1268 : : assoc_array_ptr_to_shortcut(node->back_pointer);
1269 : 0 : edit->set[1].ptr = &s->next_node;
1270 : : }
1271 : 0 : edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1272 : 0 : edit->excised_subtree = assoc_array_node_to_ptr(node);
1273 : : }
1274 : : }
1275 : :
1276 : 0 : return edit;
1277 : :
1278 : : enomem:
1279 : : /* Clean up after an out of memory error */
1280 : : pr_devel("enomem\n");
1281 : 0 : assoc_array_cancel_edit(edit);
1282 : 0 : return ERR_PTR(-ENOMEM);
1283 : : }
1284 : :
1285 : : /**
1286 : : * assoc_array_clear - Script deletion of all objects from an associative array
1287 : : * @array: The array to clear.
1288 : : * @ops: The operations to use.
1289 : : *
1290 : : * Precalculate and preallocate a script for the deletion of all the objects
1291 : : * from an associative array. This results in an edit script that can either
1292 : : * be applied or cancelled.
1293 : : *
1294 : : * The function returns a pointer to an edit script if there are objects to be
1295 : : * deleted, NULL if there are no objects in the array or -ENOMEM.
1296 : : *
1297 : : * The caller should lock against other modifications and must continue to hold
1298 : : * the lock until assoc_array_apply_edit() has been called.
1299 : : *
1300 : : * Accesses to the tree may take place concurrently with this function,
1301 : : * provided they hold the RCU read lock.
1302 : : */
1303 : 0 : struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1304 : : const struct assoc_array_ops *ops)
1305 : : {
1306 : : struct assoc_array_edit *edit;
1307 : :
1308 : : pr_devel("-->%s()\n", __func__);
1309 : :
1310 [ # # ]: 0 : if (!array->root)
1311 : : return NULL;
1312 : :
1313 : : edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1314 [ # # ]: 0 : if (!edit)
1315 : : return ERR_PTR(-ENOMEM);
1316 : 0 : edit->array = array;
1317 : 0 : edit->ops = ops;
1318 : 0 : edit->set[1].ptr = &array->root;
1319 : 0 : edit->set[1].to = NULL;
1320 : 0 : edit->excised_subtree = array->root;
1321 : 0 : edit->ops_for_excised_subtree = ops;
1322 : : pr_devel("all gone\n");
1323 : 0 : return edit;
1324 : : }
1325 : :
1326 : : /*
1327 : : * Handle the deferred destruction after an applied edit.
1328 : : */
1329 : 0 : static void assoc_array_rcu_cleanup(struct rcu_head *head)
1330 : : {
1331 : : struct assoc_array_edit *edit =
1332 : : container_of(head, struct assoc_array_edit, rcu);
1333 : : int i;
1334 : :
1335 : : pr_devel("-->%s()\n", __func__);
1336 : :
1337 [ - + ]: 1 : if (edit->dead_leaf)
1338 : 1 : edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1339 [ + + ]: 2 : for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1340 [ - + ]: 1 : if (edit->excised_meta[i])
1341 : 0 : kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1342 : :
1343 [ + - ]: 1 : if (edit->excised_subtree) {
1344 [ # # ]: 1 : BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1345 [ # # ]: 0 : if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1346 : : struct assoc_array_node *n =
1347 : : assoc_array_ptr_to_node(edit->excised_subtree);
1348 : 0 : n->back_pointer = NULL;
1349 : : } else {
1350 : : struct assoc_array_shortcut *s =
1351 : : assoc_array_ptr_to_shortcut(edit->excised_subtree);
1352 : 0 : s->back_pointer = NULL;
1353 : : }
1354 : 0 : assoc_array_destroy_subtree(edit->excised_subtree,
1355 : : edit->ops_for_excised_subtree);
1356 : : }
1357 : :
1358 : 0 : kfree(edit);
1359 : 1 : }
1360 : :
1361 : : /**
1362 : : * assoc_array_apply_edit - Apply an edit script to an associative array
1363 : : * @edit: The script to apply.
1364 : : *
1365 : : * Apply an edit script to an associative array to effect an insertion,
1366 : : * deletion or clearance. As the edit script includes preallocated memory,
1367 : : * this is guaranteed not to fail.
1368 : : *
1369 : : * The edit script, dead objects and dead metadata will be scheduled for
1370 : : * destruction after an RCU grace period to permit those doing read-only
1371 : : * accesses on the array to continue to do so under the RCU read lock whilst
1372 : : * the edit is taking place.
1373 : : */
1374 : 0 : void assoc_array_apply_edit(struct assoc_array_edit *edit)
1375 : : {
1376 : : struct assoc_array_shortcut *shortcut;
1377 : : struct assoc_array_node *node;
1378 : : struct assoc_array_ptr *ptr;
1379 : : int i;
1380 : :
1381 : : pr_devel("-->%s()\n", __func__);
1382 : :
1383 : 1 : smp_wmb();
1384 [ + - ]: 1 : if (edit->leaf_p)
1385 : 1 : *edit->leaf_p = edit->leaf;
1386 : :
1387 : 1 : smp_wmb();
1388 [ + + ]: 2 : for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1389 [ - + ]: 1 : if (edit->set_parent_slot[i].p)
1390 : 0 : *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1391 : :
1392 : 1 : smp_wmb();
1393 [ + + ]: 17 : for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1394 [ - + ]: 16 : if (edit->set_backpointers[i])
1395 : 0 : *edit->set_backpointers[i] = edit->set_backpointers_to;
1396 : :
1397 : 1 : smp_wmb();
1398 [ + + ]: 3 : for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1399 [ + + ]: 2 : if (edit->set[i].ptr)
1400 : 1 : *edit->set[i].ptr = edit->set[i].to;
1401 : :
1402 [ - + ]: 1 : if (edit->array->root == NULL) {
1403 : 0 : edit->array->nr_leaves_on_tree = 0;
1404 [ + - ]: 1 : } else if (edit->adjust_count_on) {
1405 : : node = edit->adjust_count_on;
1406 : : for (;;) {
1407 : 1 : node->nr_leaves_on_branch += edit->adjust_count_by;
1408 : :
1409 : 1 : ptr = node->back_pointer;
1410 [ - + ]: 1 : if (!ptr)
1411 : : break;
1412 [ # # ]: 0 : if (assoc_array_ptr_is_shortcut(ptr)) {
1413 : : shortcut = assoc_array_ptr_to_shortcut(ptr);
1414 : 0 : ptr = shortcut->back_pointer;
1415 [ # # ]: 0 : if (!ptr)
1416 : : break;
1417 : : }
1418 [ # # ]: 0 : BUG_ON(!assoc_array_ptr_is_node(ptr));
1419 : : node = assoc_array_ptr_to_node(ptr);
1420 : 0 : }
1421 : :
1422 : 1 : edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1423 : : }
1424 : :
1425 : 1 : call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1426 : 1 : }
1427 : :
1428 : : /**
1429 : : * assoc_array_cancel_edit - Discard an edit script.
1430 : : * @edit: The script to discard.
1431 : : *
1432 : : * Free an edit script and all the preallocated data it holds without making
1433 : : * any changes to the associative array it was intended for.
1434 : : *
1435 : : * NOTE! In the case of an insertion script, this does _not_ release the leaf
1436 : : * that was to be inserted. That is left to the caller.
1437 : : */
1438 : 0 : void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1439 : : {
1440 : : struct assoc_array_ptr *ptr;
1441 : : int i;
1442 : :
1443 : : pr_devel("-->%s()\n", __func__);
1444 : :
1445 : : /* Clean up after an out of memory error */
1446 [ + + ]: 4 : for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1447 : 3 : ptr = edit->new_meta[i];
1448 [ + + ]: 3 : if (ptr) {
1449 [ + - ]: 1 : if (assoc_array_ptr_is_node(ptr))
1450 : 1 : kfree(assoc_array_ptr_to_node(ptr));
1451 : : else
1452 : 0 : kfree(assoc_array_ptr_to_shortcut(ptr));
1453 : : }
1454 : : }
1455 : 1 : kfree(edit);
1456 : 1 : }
1457 : :
1458 : : /**
1459 : : * assoc_array_gc - Garbage collect an associative array.
1460 : : * @array: The array to clean.
1461 : : * @ops: The operations to use.
1462 : : * @iterator: A callback function to pass judgement on each object.
1463 : : * @iterator_data: Private data for the callback function.
1464 : : *
1465 : : * Collect garbage from an associative array and pack down the internal tree to
1466 : : * save memory.
1467 : : *
1468 : : * The iterator function is asked to pass judgement upon each object in the
1469 : : * array. If it returns false, the object is discard and if it returns true,
1470 : : * the object is kept. If it returns true, it must increment the object's
1471 : : * usage count (or whatever it needs to do to retain it) before returning.
1472 : : *
1473 : : * This function returns 0 if successful or -ENOMEM if out of memory. In the
1474 : : * latter case, the array is not changed.
1475 : : *
1476 : : * The caller should lock against other modifications and must continue to hold
1477 : : * the lock until assoc_array_apply_edit() has been called.
1478 : : *
1479 : : * Accesses to the tree may take place concurrently with this function,
1480 : : * provided they hold the RCU read lock.
1481 : : */
1482 : 0 : int assoc_array_gc(struct assoc_array *array,
1483 : : const struct assoc_array_ops *ops,
1484 : : bool (*iterator)(void *object, void *iterator_data),
1485 : : void *iterator_data)
1486 : : {
1487 : : struct assoc_array_shortcut *shortcut, *new_s;
1488 : : struct assoc_array_node *node, *new_n;
1489 : : struct assoc_array_edit *edit;
1490 : : struct assoc_array_ptr *cursor, *ptr;
1491 : : struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1492 : : unsigned long nr_leaves_on_tree;
1493 : : int keylen, slot, nr_free, next_slot, i;
1494 : :
1495 : : pr_devel("-->%s()\n", __func__);
1496 : :
1497 [ # # ]: 0 : if (!array->root)
1498 : : return 0;
1499 : :
1500 : : edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1501 [ # # ]: 0 : if (!edit)
1502 : : return -ENOMEM;
1503 : 0 : edit->array = array;
1504 : 0 : edit->ops = ops;
1505 : 0 : edit->ops_for_excised_subtree = ops;
1506 : 0 : edit->set[0].ptr = &array->root;
1507 : 0 : edit->excised_subtree = array->root;
1508 : :
1509 : 0 : new_root = new_parent = NULL;
1510 : : new_ptr_pp = &new_root;
1511 : 0 : cursor = array->root;
1512 : :
1513 : : descend:
1514 : : /* If this point is a shortcut, then we need to duplicate it and
1515 : : * advance the target cursor.
1516 : : */
1517 [ # # ]: 0 : if (assoc_array_ptr_is_shortcut(cursor)) {
1518 : : shortcut = assoc_array_ptr_to_shortcut(cursor);
1519 : 0 : keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1520 : 0 : keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1521 : 0 : new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1522 : : keylen * sizeof(unsigned long), GFP_KERNEL);
1523 [ # # ]: 0 : if (!new_s)
1524 : : goto enomem;
1525 : : pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1526 : 0 : memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1527 : : keylen * sizeof(unsigned long)));
1528 : 0 : new_s->back_pointer = new_parent;
1529 : 0 : new_s->parent_slot = shortcut->parent_slot;
1530 : 0 : *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1531 : 0 : new_ptr_pp = &new_s->next_node;
1532 : 0 : cursor = shortcut->next_node;
1533 : : }
1534 : :
1535 : : /* Duplicate the node at this position */
1536 : : node = assoc_array_ptr_to_node(cursor);
1537 : : new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1538 [ # # ]: 0 : if (!new_n)
1539 : : goto enomem;
1540 : : pr_devel("dup node %p -> %p\n", node, new_n);
1541 : 0 : new_n->back_pointer = new_parent;
1542 : 0 : new_n->parent_slot = node->parent_slot;
1543 : 0 : *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1544 : : new_ptr_pp = NULL;
1545 : : slot = 0;
1546 : :
1547 : : continue_node:
1548 : : /* Filter across any leaves and gc any subtrees */
1549 [ # # ]: 0 : for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1550 : 0 : ptr = node->slots[slot];
1551 [ # # ]: 0 : if (!ptr)
1552 : 0 : continue;
1553 : :
1554 [ # # ]: 0 : if (assoc_array_ptr_is_leaf(ptr)) {
1555 [ # # ]: 0 : if (iterator(assoc_array_ptr_to_leaf(ptr),
1556 : : iterator_data))
1557 : : /* The iterator will have done any reference
1558 : : * counting on the object for us.
1559 : : */
1560 : 0 : new_n->slots[slot] = ptr;
1561 : 0 : continue;
1562 : : }
1563 : :
1564 : 0 : new_ptr_pp = &new_n->slots[slot];
1565 : : cursor = ptr;
1566 : 0 : goto descend;
1567 : : }
1568 : :
1569 : : pr_devel("-- compress node %p --\n", new_n);
1570 : :
1571 : : /* Count up the number of empty slots in this node and work out the
1572 : : * subtree leaf count.
1573 : : */
1574 : 0 : new_n->nr_leaves_on_branch = 0;
1575 : : nr_free = 0;
1576 [ # # ]: 0 : for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1577 : 0 : ptr = new_n->slots[slot];
1578 [ # # ]: 0 : if (!ptr)
1579 : 0 : nr_free++;
1580 [ # # ]: 0 : else if (assoc_array_ptr_is_leaf(ptr))
1581 : 0 : new_n->nr_leaves_on_branch++;
1582 : : }
1583 : : pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1584 : :
1585 : : /* See what we can fold in */
1586 : : next_slot = 0;
1587 [ # # ]: 0 : for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1588 : : struct assoc_array_shortcut *s;
1589 : : struct assoc_array_node *child;
1590 : :
1591 : 0 : ptr = new_n->slots[slot];
1592 [ # # ][ # # ]: 0 : if (!ptr || assoc_array_ptr_is_leaf(ptr))
1593 : 0 : continue;
1594 : :
1595 : : s = NULL;
1596 [ # # ]: 0 : if (assoc_array_ptr_is_shortcut(ptr)) {
1597 : : s = assoc_array_ptr_to_shortcut(ptr);
1598 : 0 : ptr = s->next_node;
1599 : : }
1600 : :
1601 : : child = assoc_array_ptr_to_node(ptr);
1602 : 0 : new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1603 : :
1604 [ # # ]: 0 : if (child->nr_leaves_on_branch <= nr_free + 1) {
1605 : : /* Fold the child node into this one */
1606 : : pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1607 : : slot, child->nr_leaves_on_branch, nr_free + 1,
1608 : : next_slot);
1609 : :
1610 : : /* We would already have reaped an intervening shortcut
1611 : : * on the way back up the tree.
1612 : : */
1613 [ # # ]: 0 : BUG_ON(s);
1614 : :
1615 : 0 : new_n->slots[slot] = NULL;
1616 : : nr_free++;
1617 [ # # ]: 0 : if (slot < next_slot)
1618 : : next_slot = slot;
1619 [ # # ]: 0 : for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1620 : 0 : struct assoc_array_ptr *p = child->slots[i];
1621 [ # # ]: 0 : if (!p)
1622 : 0 : continue;
1623 [ # # ]: 0 : BUG_ON(assoc_array_ptr_is_meta(p));
1624 [ # # ]: 0 : while (new_n->slots[next_slot])
1625 : 0 : next_slot++;
1626 [ # # ]: 0 : BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1627 : 0 : new_n->slots[next_slot++] = p;
1628 : 0 : nr_free--;
1629 : : }
1630 : 0 : kfree(child);
1631 : : } else {
1632 : : pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1633 : : slot, child->nr_leaves_on_branch, nr_free + 1,
1634 : : next_slot);
1635 : : }
1636 : : }
1637 : :
1638 : : pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1639 : :
1640 : 0 : nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1641 : :
1642 : : /* Excise this node if it is singly occupied by a shortcut */
1643 [ # # ]: 0 : if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1644 [ # # ]: 0 : for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1645 [ # # ]: 0 : if ((ptr = new_n->slots[slot]))
1646 : : break;
1647 : :
1648 [ # # ][ # # ]: 0 : if (assoc_array_ptr_is_meta(ptr) &&
1649 : : assoc_array_ptr_is_shortcut(ptr)) {
1650 : : pr_devel("excise node %p with 1 shortcut\n", new_n);
1651 : : new_s = assoc_array_ptr_to_shortcut(ptr);
1652 : 0 : new_parent = new_n->back_pointer;
1653 : 0 : slot = new_n->parent_slot;
1654 : 0 : kfree(new_n);
1655 [ # # ]: 0 : if (!new_parent) {
1656 : 0 : new_s->back_pointer = NULL;
1657 : 0 : new_s->parent_slot = 0;
1658 : 0 : new_root = ptr;
1659 : 0 : goto gc_complete;
1660 : : }
1661 : :
1662 [ # # ]: 0 : if (assoc_array_ptr_is_shortcut(new_parent)) {
1663 : : /* We can discard any preceding shortcut also */
1664 : : struct assoc_array_shortcut *s =
1665 : : assoc_array_ptr_to_shortcut(new_parent);
1666 : :
1667 : : pr_devel("excise preceding shortcut\n");
1668 : :
1669 : 0 : new_parent = new_s->back_pointer = s->back_pointer;
1670 : 0 : slot = new_s->parent_slot = s->parent_slot;
1671 : 0 : kfree(s);
1672 [ # # ]: 0 : if (!new_parent) {
1673 : 0 : new_s->back_pointer = NULL;
1674 : 0 : new_s->parent_slot = 0;
1675 : 0 : new_root = ptr;
1676 : 0 : goto gc_complete;
1677 : : }
1678 : : }
1679 : :
1680 : 0 : new_s->back_pointer = new_parent;
1681 : 0 : new_s->parent_slot = slot;
1682 : : new_n = assoc_array_ptr_to_node(new_parent);
1683 : 0 : new_n->slots[slot] = ptr;
1684 : 0 : goto ascend_old_tree;
1685 : : }
1686 : : }
1687 : :
1688 : : /* Excise any shortcuts we might encounter that point to nodes that
1689 : : * only contain leaves.
1690 : : */
1691 : 0 : ptr = new_n->back_pointer;
1692 [ # # ]: 0 : if (!ptr)
1693 : : goto gc_complete;
1694 : :
1695 [ # # ]: 0 : if (assoc_array_ptr_is_shortcut(ptr)) {
1696 : : new_s = assoc_array_ptr_to_shortcut(ptr);
1697 : 0 : new_parent = new_s->back_pointer;
1698 : 0 : slot = new_s->parent_slot;
1699 : :
1700 [ # # ]: 0 : if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1701 : : struct assoc_array_node *n;
1702 : :
1703 : : pr_devel("excise shortcut\n");
1704 : 0 : new_n->back_pointer = new_parent;
1705 : 0 : new_n->parent_slot = slot;
1706 : 0 : kfree(new_s);
1707 [ # # ]: 0 : if (!new_parent) {
1708 : 0 : new_root = assoc_array_node_to_ptr(new_n);
1709 : 0 : goto gc_complete;
1710 : : }
1711 : :
1712 : : n = assoc_array_ptr_to_node(new_parent);
1713 : 0 : n->slots[slot] = assoc_array_node_to_ptr(new_n);
1714 : : }
1715 : : } else {
1716 : : new_parent = ptr;
1717 : : }
1718 : : new_n = assoc_array_ptr_to_node(new_parent);
1719 : :
1720 : : ascend_old_tree:
1721 : 0 : ptr = node->back_pointer;
1722 [ # # ]: 0 : if (assoc_array_ptr_is_shortcut(ptr)) {
1723 : : shortcut = assoc_array_ptr_to_shortcut(ptr);
1724 : 0 : slot = shortcut->parent_slot;
1725 : 0 : cursor = shortcut->back_pointer;
1726 : : } else {
1727 : 0 : slot = node->parent_slot;
1728 : : cursor = ptr;
1729 : : }
1730 [ # # ]: 0 : BUG_ON(!ptr);
1731 : : node = assoc_array_ptr_to_node(cursor);
1732 : 0 : slot++;
1733 : 0 : goto continue_node;
1734 : :
1735 : : gc_complete:
1736 : 0 : edit->set[0].to = new_root;
1737 : 0 : assoc_array_apply_edit(edit);
1738 : 0 : edit->array->nr_leaves_on_tree = nr_leaves_on_tree;
1739 : 0 : return 0;
1740 : :
1741 : : enomem:
1742 : : pr_devel("enomem\n");
1743 : 0 : assoc_array_destroy_subtree(new_root, edit->ops);
1744 : 0 : kfree(edit);
1745 : 0 : return -ENOMEM;
1746 : : }
|