Branch data Line data Source code
1 : : /*
2 : : * kernel/locking/mutex.c
3 : : *
4 : : * Mutexes: blocking mutual exclusion locks
5 : : *
6 : : * Started by Ingo Molnar:
7 : : *
8 : : * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 : : *
10 : : * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 : : * David Howells for suggestions and improvements.
12 : : *
13 : : * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 : : * from the -rt tree, where it was originally implemented for rtmutexes
15 : : * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 : : * and Sven Dietrich.
17 : : *
18 : : * Also see Documentation/mutex-design.txt.
19 : : */
20 : : #include <linux/mutex.h>
21 : : #include <linux/ww_mutex.h>
22 : : #include <linux/sched.h>
23 : : #include <linux/sched/rt.h>
24 : : #include <linux/export.h>
25 : : #include <linux/spinlock.h>
26 : : #include <linux/interrupt.h>
27 : : #include <linux/debug_locks.h>
28 : :
29 : : /*
30 : : * In the DEBUG case we are using the "NULL fastpath" for mutexes,
31 : : * which forces all calls into the slowpath:
32 : : */
33 : : #ifdef CONFIG_DEBUG_MUTEXES
34 : : # include "mutex-debug.h"
35 : : # include <asm-generic/mutex-null.h>
36 : : #else
37 : : # include "mutex.h"
38 : : # include <asm/mutex.h>
39 : : #endif
40 : :
41 : : /*
42 : : * A negative mutex count indicates that waiters are sleeping waiting for the
43 : : * mutex.
44 : : */
45 : : #define MUTEX_SHOW_NO_WAITER(mutex) (atomic_read(&(mutex)->count) >= 0)
46 : :
47 : : void
48 : 0 : __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
49 : : {
50 : 6469033 : atomic_set(&lock->count, 1);
51 : 6469033 : spin_lock_init(&lock->wait_lock);
52 : 6469033 : INIT_LIST_HEAD(&lock->wait_list);
53 : : mutex_clear_owner(lock);
54 : : #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
55 : 6469033 : lock->spin_mlock = NULL;
56 : : #endif
57 : :
58 : : debug_mutex_init(lock, name, key);
59 : 6469033 : }
60 : :
61 : : EXPORT_SYMBOL(__mutex_init);
62 : :
63 : : #ifndef CONFIG_DEBUG_LOCK_ALLOC
64 : : /*
65 : : * We split the mutex lock/unlock logic into separate fastpath and
66 : : * slowpath functions, to reduce the register pressure on the fastpath.
67 : : * We also put the fastpath first in the kernel image, to make sure the
68 : : * branch is predicted by the CPU as default-untaken.
69 : : */
70 : : static __used noinline void __sched
71 : : __mutex_lock_slowpath(atomic_t *lock_count);
72 : :
73 : : /**
74 : : * mutex_lock - acquire the mutex
75 : : * @lock: the mutex to be acquired
76 : : *
77 : : * Lock the mutex exclusively for this task. If the mutex is not
78 : : * available right now, it will sleep until it can get it.
79 : : *
80 : : * The mutex must later on be released by the same task that
81 : : * acquired it. Recursive locking is not allowed. The task
82 : : * may not exit without first unlocking the mutex. Also, kernel
83 : : * memory where the mutex resides mutex must not be freed with
84 : : * the mutex still locked. The mutex must first be initialized
85 : : * (or statically defined) before it can be locked. memset()-ing
86 : : * the mutex to 0 is not allowed.
87 : : *
88 : : * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
89 : : * checks that will enforce the restrictions and will also do
90 : : * deadlock debugging. )
91 : : *
92 : : * This function is similar to (but not equivalent to) down().
93 : : */
94 : 0 : void __sched mutex_lock(struct mutex *lock)
95 : : {
96 : : might_sleep();
97 : : /*
98 : : * The locking fastpath is the 1->0 transition from
99 : : * 'unlocked' into 'locked' state.
100 : : */
101 : 48577439 : __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
102 : : mutex_set_owner(lock);
103 : 64 : }
104 : :
105 : : EXPORT_SYMBOL(mutex_lock);
106 : : #endif
107 : :
108 : : #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
109 : : /*
110 : : * In order to avoid a stampede of mutex spinners from acquiring the mutex
111 : : * more or less simultaneously, the spinners need to acquire a MCS lock
112 : : * first before spinning on the owner field.
113 : : *
114 : : * We don't inline mspin_lock() so that perf can correctly account for the
115 : : * time spent in this lock function.
116 : : */
117 : : struct mspin_node {
118 : : struct mspin_node *next ;
119 : : int locked; /* 1 if lock acquired */
120 : : };
121 : : #define MLOCK(mutex) ((struct mspin_node **)&((mutex)->spin_mlock))
122 : :
123 : : static noinline
124 : 0 : void mspin_lock(struct mspin_node **lock, struct mspin_node *node)
125 : : {
126 : : struct mspin_node *prev;
127 : :
128 : : /* Init node */
129 : 2121026 : node->locked = 0;
130 : 2121026 : node->next = NULL;
131 : :
132 : 4242052 : prev = xchg(lock, node);
133 [ + + ]: 4242052 : if (likely(prev == NULL)) {
134 : : /* Lock acquired */
135 : 2121009 : node->locked = 1;
136 : 2121009 : return;
137 : : }
138 : 17 : ACCESS_ONCE(prev->next) = node;
139 : 17 : smp_wmb();
140 : : /* Wait until the lock holder passes the lock down */
141 [ + + ]: 1469 : while (!ACCESS_ONCE(node->locked))
142 : 1452 : arch_mutex_cpu_relax();
143 : : }
144 : :
145 : 0 : static void mspin_unlock(struct mspin_node **lock, struct mspin_node *node)
146 : : {
147 : 2121026 : struct mspin_node *next = ACCESS_ONCE(node->next);
148 : :
149 [ + + ]: 2121026 : if (likely(!next)) {
150 : : /*
151 : : * Release the lock by setting it to NULL
152 : : */
153 [ + + ]: 2121025 : if (cmpxchg(lock, node, NULL) == node)
154 : 2121026 : return;
155 : : /* Wait until the next pointer is set */
156 [ - + ]: 16 : while (!(next = ACCESS_ONCE(node->next)))
157 : 0 : arch_mutex_cpu_relax();
158 : : }
159 : 17 : ACCESS_ONCE(next->locked) = 1;
160 : 17 : smp_wmb();
161 : : }
162 : :
163 : : /*
164 : : * Mutex spinning code migrated from kernel/sched/core.c
165 : : */
166 : :
167 : : static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
168 : : {
169 [ + + ]: 3629535091 : if (lock->owner != owner)
170 : : return false;
171 : :
172 : : /*
173 : : * Ensure we emit the owner->on_cpu, dereference _after_ checking
174 : : * lock->owner still matches owner, if that fails, owner might
175 : : * point to free()d memory, if it still matches, the rcu_read_lock()
176 : : * ensures the memory stays valid.
177 : : */
178 : 3628077341 : barrier();
179 : :
180 : 3628077341 : return owner->on_cpu;
181 : : }
182 : :
183 : : /*
184 : : * Look out! "owner" is an entirely speculative pointer
185 : : * access and not reliable.
186 : : */
187 : : static noinline
188 : 0 : int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
189 : : {
190 : : rcu_read_lock();
191 [ + + ]: 3628804375 : while (owner_running(lock, owner)) {
192 [ + + ]: 3628076774 : if (need_resched())
193 : : break;
194 : :
195 : 3628073659 : arch_mutex_cpu_relax();
196 : : }
197 : : rcu_read_unlock();
198 : :
199 : : /*
200 : : * We break out the loop above on need_resched() and when the
201 : : * owner changed, which is a sign for heavy contention. Return
202 : : * success only when lock->owner is NULL.
203 : : */
204 : 730716 : return lock->owner == NULL;
205 : : }
206 : :
207 : : /*
208 : : * Initial check for entering the mutex spinning loop
209 : : */
210 : : static inline int mutex_can_spin_on_owner(struct mutex *lock)
211 : : {
212 : : struct task_struct *owner;
213 : : int retval = 1;
214 : :
215 : : rcu_read_lock();
216 : 1077011 : owner = ACCESS_ONCE(lock->owner);
217 [ # # # # : 1077011 : if (owner)
+ + + - +
+ ]
218 : 850458 : retval = owner->on_cpu;
219 : : rcu_read_unlock();
220 : : /*
221 : : * if lock->owner is not set, the mutex owner may have just acquired
222 : : * it and not set the owner yet or the mutex has been released.
223 : : */
224 : : return retval;
225 : : }
226 : : #endif
227 : :
228 : : static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
229 : :
230 : : /**
231 : : * mutex_unlock - release the mutex
232 : : * @lock: the mutex to be released
233 : : *
234 : : * Unlock a mutex that has been locked by this task previously.
235 : : *
236 : : * This function must not be used in interrupt context. Unlocking
237 : : * of a not locked mutex is not allowed.
238 : : *
239 : : * This function is similar to (but not equivalent to) up().
240 : : */
241 : 0 : void __sched mutex_unlock(struct mutex *lock)
242 : : {
243 : : /*
244 : : * The unlocking fastpath is the 0->1 transition from 'locked'
245 : : * into 'unlocked' state:
246 : : */
247 : : #ifndef CONFIG_DEBUG_MUTEXES
248 : : /*
249 : : * When debugging is enabled we must not clear the owner before time,
250 : : * the slow path will always be taken, and that clears the owner field
251 : : * after verifying that it was indeed current.
252 : : */
253 : : mutex_clear_owner(lock);
254 : : #endif
255 : 50083963 : __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
256 : 2033 : }
257 : :
258 : : EXPORT_SYMBOL(mutex_unlock);
259 : :
260 : : /**
261 : : * ww_mutex_unlock - release the w/w mutex
262 : : * @lock: the mutex to be released
263 : : *
264 : : * Unlock a mutex that has been locked by this task previously with any of the
265 : : * ww_mutex_lock* functions (with or without an acquire context). It is
266 : : * forbidden to release the locks after releasing the acquire context.
267 : : *
268 : : * This function must not be used in interrupt context. Unlocking
269 : : * of a unlocked mutex is not allowed.
270 : : */
271 : 0 : void __sched ww_mutex_unlock(struct ww_mutex *lock)
272 : : {
273 : : /*
274 : : * The unlocking fastpath is the 0->1 transition from 'locked'
275 : : * into 'unlocked' state:
276 : : */
277 [ # # ]: 0 : if (lock->ctx) {
278 : : #ifdef CONFIG_DEBUG_MUTEXES
279 : : DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
280 : : #endif
281 [ # # ]: 0 : if (lock->ctx->acquired > 0)
282 : 0 : lock->ctx->acquired--;
283 : 0 : lock->ctx = NULL;
284 : : }
285 : :
286 : : #ifndef CONFIG_DEBUG_MUTEXES
287 : : /*
288 : : * When debugging is enabled we must not clear the owner before time,
289 : : * the slow path will always be taken, and that clears the owner field
290 : : * after verifying that it was indeed current.
291 : : */
292 : : mutex_clear_owner(&lock->base);
293 : : #endif
294 : 0 : __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
295 : 0 : }
296 : : EXPORT_SYMBOL(ww_mutex_unlock);
297 : :
298 : : static inline int __sched
299 : : __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
300 : : {
301 : : struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
302 : 0 : struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
303 : :
304 [ # # ][ # # ]: 0 : if (!hold_ctx)
305 : : return 0;
306 : :
307 [ # # ][ # # ]: 0 : if (unlikely(ctx == hold_ctx))
308 : : return -EALREADY;
309 : :
310 [ # # ][ # # ]: 0 : if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
[ # # ][ # # ]
311 [ # # ][ # # ]: 0 : (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
312 : : #ifdef CONFIG_DEBUG_MUTEXES
313 : : DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
314 : : ctx->contending_lock = ww;
315 : : #endif
316 : : return -EDEADLK;
317 : : }
318 : :
319 : : return 0;
320 : : }
321 : :
322 : : static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
323 : : struct ww_acquire_ctx *ww_ctx)
324 : : {
325 : : #ifdef CONFIG_DEBUG_MUTEXES
326 : : /*
327 : : * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
328 : : * but released with a normal mutex_unlock in this call.
329 : : *
330 : : * This should never happen, always use ww_mutex_unlock.
331 : : */
332 : : DEBUG_LOCKS_WARN_ON(ww->ctx);
333 : :
334 : : /*
335 : : * Not quite done after calling ww_acquire_done() ?
336 : : */
337 : : DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
338 : :
339 : : if (ww_ctx->contending_lock) {
340 : : /*
341 : : * After -EDEADLK you tried to
342 : : * acquire a different ww_mutex? Bad!
343 : : */
344 : : DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
345 : :
346 : : /*
347 : : * You called ww_mutex_lock after receiving -EDEADLK,
348 : : * but 'forgot' to unlock everything else first?
349 : : */
350 : : DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
351 : : ww_ctx->contending_lock = NULL;
352 : : }
353 : :
354 : : /*
355 : : * Naughty, using a different class will lead to undefined behavior!
356 : : */
357 : : DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
358 : : #endif
359 : 0 : ww_ctx->acquired++;
360 : : }
361 : :
362 : : /*
363 : : * after acquiring lock with fastpath or when we lost out in contested
364 : : * slowpath, set ctx and wake up any waiters so they can recheck.
365 : : *
366 : : * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
367 : : * as the fastpath and opportunistic spinning are disabled in that case.
368 : : */
369 : : static __always_inline void
370 : : ww_mutex_set_context_fastpath(struct ww_mutex *lock,
371 : : struct ww_acquire_ctx *ctx)
372 : : {
373 : : unsigned long flags;
374 : : struct mutex_waiter *cur;
375 : :
376 : : ww_mutex_lock_acquired(lock, ctx);
377 : :
378 : 0 : lock->ctx = ctx;
379 : :
380 : : /*
381 : : * The lock->ctx update should be visible on all cores before
382 : : * the atomic read is done, otherwise contended waiters might be
383 : : * missed. The contended waiters will either see ww_ctx == NULL
384 : : * and keep spinning, or it will acquire wait_lock, add itself
385 : : * to waiter list and sleep.
386 : : */
387 : 0 : smp_mb(); /* ^^^ */
388 : :
389 : : /*
390 : : * Check if lock is contended, if not there is nobody to wake up
391 : : */
392 [ # # # # : 0 : if (likely(atomic_read(&lock->base.count) == 0))
# # # # ]
393 : : return;
394 : :
395 : : /*
396 : : * Uh oh, we raced in fastpath, wake up everyone in this case,
397 : : * so they can see the new lock->ctx.
398 : : */
399 : : spin_lock_mutex(&lock->base.wait_lock, flags);
400 [ # # ][ # # ]: 0 : list_for_each_entry(cur, &lock->base.wait_list, list) {
[ # # ][ # # ]
401 : : debug_mutex_wake_waiter(&lock->base, cur);
402 : 0 : wake_up_process(cur->task);
403 : : }
404 : : spin_unlock_mutex(&lock->base.wait_lock, flags);
405 : : }
406 : :
407 : : /*
408 : : * Lock a mutex (possibly interruptible), slowpath:
409 : : */
410 : : static __always_inline int __sched
411 : : __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
412 : : struct lockdep_map *nest_lock, unsigned long ip,
413 : : struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
414 : : {
415 : 1077011 : struct task_struct *task = current;
416 : : struct mutex_waiter waiter;
417 : : unsigned long flags;
418 : : int ret;
419 : :
420 : 1077011 : preempt_disable();
421 : : mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
422 : :
423 : : #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
424 : : /*
425 : : * Optimistic spinning.
426 : : *
427 : : * We try to spin for acquisition when we find that there are no
428 : : * pending waiters and the lock owner is currently running on a
429 : : * (different) CPU.
430 : : *
431 : : * The rationale is that if the lock owner is running, it is likely to
432 : : * release the lock soon.
433 : : *
434 : : * Since this needs the lock owner, and this mutex implementation
435 : : * doesn't track the owner atomically in the lock field, we need to
436 : : * track it non-atomically.
437 : : *
438 : : * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
439 : : * to serialize everything.
440 : : *
441 : : * The mutex spinners are queued up using MCS lock so that only one
442 : : * spinner can compete for the mutex. However, if mutex spinning isn't
443 : : * going to happen, there is no point in going through the lock/unlock
444 : : * overhead.
445 : : */
446 [ # # ][ # # ]: 1077010 : if (!mutex_can_spin_on_owner(lock))
[ + - ][ + + ]
[ + + ]
447 : : goto slowpath;
448 : :
449 : : for (;;) {
450 : : struct task_struct *owner;
451 : : struct mspin_node node;
452 : :
453 [ # # ][ # # ]: 0 : if (use_ww_ctx && ww_ctx->acquired > 0) {
454 : : struct ww_mutex *ww;
455 : :
456 : : ww = container_of(lock, struct ww_mutex, base);
457 : : /*
458 : : * If ww->ctx is set the contents are undefined, only
459 : : * by acquiring wait_lock there is a guarantee that
460 : : * they are not invalid when reading.
461 : : *
462 : : * As such, when deadlock detection needs to be
463 : : * performed the optimistic spinning cannot be done.
464 : : */
465 [ # # ][ # # ]: 0 : if (ACCESS_ONCE(ww->ctx))
466 : : goto slowpath;
467 : : }
468 : :
469 : : /*
470 : : * If there's an owner, wait for it to either
471 : : * release the lock or go to sleep.
472 : : */
473 : 2121026 : mspin_lock(MLOCK(lock), &node);
474 : 2121026 : owner = ACCESS_ONCE(lock->owner);
475 [ # # ]: 2121026 : if (owner && !mutex_spin_on_owner(lock, owner)) {
[ # # # # ]
[ # # + + ]
[ - + + + ]
[ - + + + ]
[ + + ]
476 : 3597 : mspin_unlock(MLOCK(lock), &node);
477 : : goto slowpath;
478 : : }
479 : :
480 [ # # # # ]: 3189061 : if ((atomic_read(&lock->count) == 1) &&
[ # # # # ]
[ + + + - ]
[ + + + - ]
[ + + + + ]
481 : 1071632 : (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
482 : : lock_acquired(&lock->dep_map, ip);
483 : : if (use_ww_ctx) {
484 : : struct ww_mutex *ww;
485 : : ww = container_of(lock, struct ww_mutex, base);
486 : :
487 : : ww_mutex_set_context_fastpath(ww, ww_ctx);
488 : : }
489 : :
490 : : mutex_set_owner(lock);
491 : 1071476 : mspin_unlock(MLOCK(lock), &node);
492 : 1071476 : preempt_enable();
493 : 1071476 : return 0;
494 : : }
495 : 1045953 : mspin_unlock(MLOCK(lock), &node);
496 : :
497 : : /*
498 : : * When there's no owner, we might have preempted between the
499 : : * owner acquiring the lock and setting the owner field. If
500 : : * we're an RT task that will live-lock because we won't let
501 : : * the owner complete.
502 : : */
503 [ # # ][ # # ]: 1364990 : if (!owner && (need_resched() || rt_task(task)))
[ # # # # ]
[ # # ]
[ # # + + ]
[ + - ]
[ + - - + ]
[ # # ]
[ # # + + ]
[ + + ][ + - ]
504 : : goto slowpath;
505 : :
506 : : /*
507 : : * The cpu_relax() call is a compiler barrier which forces
508 : : * everything in this loop to be re-loaded. We don't need
509 : : * memory barriers as we'll eventually observe the right
510 : : * values at the cost of a few extra spins.
511 : : */
512 : 1049550 : arch_mutex_cpu_relax();
513 : : }
514 : : slowpath:
515 : : #endif
516 : : spin_lock_mutex(&lock->wait_lock, flags);
517 : :
518 : : /* once more, can we acquire the lock? */
519 [ # # # # : 5656 : if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, 0) == 1))
# # # # #
# # # - +
# # + + +
+ ]
520 : : goto skip_wait;
521 : :
522 : : debug_mutex_lock_common(lock, &waiter);
523 : : debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
524 : :
525 : : /* add waiting tasks to the end of the waitqueue (FIFO): */
526 : 5489 : list_add_tail(&waiter.list, &lock->wait_list);
527 : 5489 : waiter.task = task;
528 : :
529 : : lock_contended(&lock->dep_map, ip);
530 : :
531 : : for (;;) {
532 : : /*
533 : : * Lets try to take the lock again - this is needed even if
534 : : * we get here for the first time (shortly after failing to
535 : : * acquire the lock), to make sure that we get a wakeup once
536 : : * it's unlocked. Later on, if we sleep, this is the
537 : : * operation that gives us the lock. We xchg it to -1, so
538 : : * that when we release the lock, we properly wake up the
539 : : * other waiters:
540 : : */
541 [ # # # # ]: 35364 : if (MUTEX_SHOW_NO_WAITER(lock) &&
[ # # # # ]
[ # # # # ]
[ + + - + ]
[ + + + + ]
542 : 14570 : (atomic_xchg(&lock->count, -1) == 1))
543 : : break;
544 : :
545 : : /*
546 : : * got a signal? (This code gets eliminated in the
547 : : * TASK_UNINTERRUPTIBLE case.)
548 : : */
549 [ # # ][ # # ]: 45 : if (unlikely(signal_pending_state(state, task))) {
[ + + ]
550 : : ret = -EINTR;
551 : : goto err;
552 : : }
553 : :
554 [ # # ][ # # ]: 0 : if (use_ww_ctx && ww_ctx->acquired > 0) {
555 : : ret = __mutex_lock_check_stamp(lock, ww_ctx);
556 [ # # ][ # # ]: 0 : if (ret)
557 : : goto err;
558 : : }
559 : :
560 : 15199 : __set_task_state(task, state);
561 : :
562 : : /* didn't get the lock, go to sleep: */
563 : : spin_unlock_mutex(&lock->wait_lock, flags);
564 : 15199 : schedule_preempt_disabled();
565 : : spin_lock_mutex(&lock->wait_lock, flags);
566 : : }
567 : 5477 : mutex_remove_waiter(lock, &waiter, current_thread_info());
568 : : /* set it to 0 if there are no waiters left: */
569 [ # # ][ # # ]: 5477 : if (likely(list_empty(&lock->wait_list)))
[ # # ][ + + ]
[ + + ]
570 : 4185 : atomic_set(&lock->count, 0);
571 : : debug_mutex_free_waiter(&waiter);
572 : :
573 : : skip_wait:
574 : : /* got the lock - cleanup and rejoice! */
575 : : lock_acquired(&lock->dep_map, ip);
576 : : mutex_set_owner(lock);
577 : :
578 : : if (use_ww_ctx) {
579 : : struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
580 : : struct mutex_waiter *cur;
581 : :
582 : : /*
583 : : * This branch gets optimized out for the common case,
584 : : * and is only important for ww_mutex_lock.
585 : : */
586 : : ww_mutex_lock_acquired(ww, ww_ctx);
587 : 0 : ww->ctx = ww_ctx;
588 : :
589 : : /*
590 : : * Give any possible sleeping processes the chance to wake up,
591 : : * so they can recheck if they have to back off.
592 : : */
593 [ # # ][ # # ]: 0 : list_for_each_entry(cur, &lock->wait_list, list) {
594 : : debug_mutex_wake_waiter(lock, cur);
595 : 0 : wake_up_process(cur->task);
596 : : }
597 : : }
598 : :
599 : : spin_unlock_mutex(&lock->wait_lock, flags);
600 : 5524 : preempt_enable();
601 : : return 0;
602 : :
603 : : err:
604 : 11 : mutex_remove_waiter(lock, &waiter, task_thread_info(task));
605 : : spin_unlock_mutex(&lock->wait_lock, flags);
606 : : debug_mutex_free_waiter(&waiter);
607 : : mutex_release(&lock->dep_map, 1, ip);
608 : 11 : preempt_enable();
609 : : return ret;
610 : : }
611 : :
612 : : #ifdef CONFIG_DEBUG_LOCK_ALLOC
613 : : void __sched
614 : : mutex_lock_nested(struct mutex *lock, unsigned int subclass)
615 : : {
616 : : might_sleep();
617 : : __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
618 : : subclass, NULL, _RET_IP_, NULL, 0);
619 : : }
620 : :
621 : : EXPORT_SYMBOL_GPL(mutex_lock_nested);
622 : :
623 : : void __sched
624 : : _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
625 : : {
626 : : might_sleep();
627 : : __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
628 : : 0, nest, _RET_IP_, NULL, 0);
629 : : }
630 : :
631 : : EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
632 : :
633 : : int __sched
634 : : mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
635 : : {
636 : : might_sleep();
637 : : return __mutex_lock_common(lock, TASK_KILLABLE,
638 : : subclass, NULL, _RET_IP_, NULL, 0);
639 : : }
640 : : EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
641 : :
642 : : int __sched
643 : : mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
644 : : {
645 : : might_sleep();
646 : : return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
647 : : subclass, NULL, _RET_IP_, NULL, 0);
648 : : }
649 : :
650 : : EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
651 : :
652 : : static inline int
653 : : ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
654 : : {
655 : : #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
656 : : unsigned tmp;
657 : :
658 : : if (ctx->deadlock_inject_countdown-- == 0) {
659 : : tmp = ctx->deadlock_inject_interval;
660 : : if (tmp > UINT_MAX/4)
661 : : tmp = UINT_MAX;
662 : : else
663 : : tmp = tmp*2 + tmp + tmp/2;
664 : :
665 : : ctx->deadlock_inject_interval = tmp;
666 : : ctx->deadlock_inject_countdown = tmp;
667 : : ctx->contending_lock = lock;
668 : :
669 : : ww_mutex_unlock(lock);
670 : :
671 : : return -EDEADLK;
672 : : }
673 : : #endif
674 : :
675 : : return 0;
676 : : }
677 : :
678 : : int __sched
679 : : __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
680 : : {
681 : : int ret;
682 : :
683 : : might_sleep();
684 : : ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
685 : : 0, &ctx->dep_map, _RET_IP_, ctx, 1);
686 : : if (!ret && ctx->acquired > 1)
687 : : return ww_mutex_deadlock_injection(lock, ctx);
688 : :
689 : : return ret;
690 : : }
691 : : EXPORT_SYMBOL_GPL(__ww_mutex_lock);
692 : :
693 : : int __sched
694 : : __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
695 : : {
696 : : int ret;
697 : :
698 : : might_sleep();
699 : : ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
700 : : 0, &ctx->dep_map, _RET_IP_, ctx, 1);
701 : :
702 : : if (!ret && ctx->acquired > 1)
703 : : return ww_mutex_deadlock_injection(lock, ctx);
704 : :
705 : : return ret;
706 : : }
707 : : EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
708 : :
709 : : #endif
710 : :
711 : : /*
712 : : * Release the lock, slowpath:
713 : : */
714 : : static inline void
715 : : __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
716 : : {
717 : : struct mutex *lock = container_of(lock_count, struct mutex, count);
718 : : unsigned long flags;
719 : :
720 : : spin_lock_mutex(&lock->wait_lock, flags);
721 : : mutex_release(&lock->dep_map, nested, _RET_IP_);
722 : : debug_mutex_unlock(lock);
723 : :
724 : : /*
725 : : * some architectures leave the lock unlocked in the fastpath failure
726 : : * case, others need to leave it locked. In the later case we have to
727 : : * unlock it here
728 : : */
729 : : if (__mutex_slowpath_needs_to_unlock())
730 : 1084930 : atomic_set(&lock->count, 1);
731 : :
732 [ + + ]: 1084930 : if (!list_empty(&lock->wait_list)) {
733 : : /* get the first entry from the wait-list: */
734 : : struct mutex_waiter *waiter =
735 : : list_entry(lock->wait_list.next,
736 : : struct mutex_waiter, list);
737 : :
738 : : debug_mutex_wake_waiter(lock, waiter);
739 : :
740 : 183630 : wake_up_process(waiter->task);
741 : : }
742 : :
743 : : spin_unlock_mutex(&lock->wait_lock, flags);
744 : : }
745 : :
746 : : /*
747 : : * Release the lock, slowpath:
748 : : */
749 : : static __used noinline void
750 : 0 : __mutex_unlock_slowpath(atomic_t *lock_count)
751 : : {
752 : : __mutex_unlock_common_slowpath(lock_count, 1);
753 : 1084930 : }
754 : :
755 : : #ifndef CONFIG_DEBUG_LOCK_ALLOC
756 : : /*
757 : : * Here come the less common (and hence less performance-critical) APIs:
758 : : * mutex_lock_interruptible() and mutex_trylock().
759 : : */
760 : : static noinline int __sched
761 : : __mutex_lock_killable_slowpath(struct mutex *lock);
762 : :
763 : : static noinline int __sched
764 : : __mutex_lock_interruptible_slowpath(struct mutex *lock);
765 : :
766 : : /**
767 : : * mutex_lock_interruptible - acquire the mutex, interruptible
768 : : * @lock: the mutex to be acquired
769 : : *
770 : : * Lock the mutex like mutex_lock(), and return 0 if the mutex has
771 : : * been acquired or sleep until the mutex becomes available. If a
772 : : * signal arrives while waiting for the lock then this function
773 : : * returns -EINTR.
774 : : *
775 : : * This function is similar to (but not equivalent to) down_interruptible().
776 : : */
777 : 0 : int __sched mutex_lock_interruptible(struct mutex *lock)
778 : : {
779 : : int ret;
780 : :
781 : : might_sleep();
782 : 1111745 : ret = __mutex_fastpath_lock_retval(&lock->count);
783 [ + + ]: 1111804 : if (likely(!ret)) {
784 : : mutex_set_owner(lock);
785 : 1111770 : return 0;
786 : : } else
787 : 34 : return __mutex_lock_interruptible_slowpath(lock);
788 : : }
789 : :
790 : : EXPORT_SYMBOL(mutex_lock_interruptible);
791 : :
792 : 0 : int __sched mutex_lock_killable(struct mutex *lock)
793 : : {
794 : : int ret;
795 : :
796 : : might_sleep();
797 : 120598 : ret = __mutex_fastpath_lock_retval(&lock->count);
798 [ + + ]: 120600 : if (likely(!ret)) {
799 : : mutex_set_owner(lock);
800 : 120527 : return 0;
801 : : } else
802 : 73 : return __mutex_lock_killable_slowpath(lock);
803 : : }
804 : : EXPORT_SYMBOL(mutex_lock_killable);
805 : :
806 : : static __used noinline void __sched
807 : 0 : __mutex_lock_slowpath(atomic_t *lock_count)
808 : : {
809 : : struct mutex *lock = container_of(lock_count, struct mutex, count);
810 : :
811 : : __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
812 : 1076904 : NULL, _RET_IP_, NULL, 0);
813 : 1076904 : }
814 : :
815 : : static noinline int __sched
816 : 0 : __mutex_lock_killable_slowpath(struct mutex *lock)
817 : : {
818 : 73 : return __mutex_lock_common(lock, TASK_KILLABLE, 0,
819 : 73 : NULL, _RET_IP_, NULL, 0);
820 : : }
821 : :
822 : : static noinline int __sched
823 : 0 : __mutex_lock_interruptible_slowpath(struct mutex *lock)
824 : : {
825 : 34 : return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
826 : 34 : NULL, _RET_IP_, NULL, 0);
827 : : }
828 : :
829 : : static noinline int __sched
830 : 0 : __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
831 : : {
832 : 0 : return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
833 : 0 : NULL, _RET_IP_, ctx, 1);
834 : : }
835 : :
836 : : static noinline int __sched
837 : 0 : __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
838 : : struct ww_acquire_ctx *ctx)
839 : : {
840 : 0 : return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
841 : 0 : NULL, _RET_IP_, ctx, 1);
842 : : }
843 : :
844 : : #endif
845 : :
846 : : /*
847 : : * Spinlock based trylock, we take the spinlock and check whether we
848 : : * can get the lock:
849 : : */
850 : : static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
851 : : {
852 : : struct mutex *lock = container_of(lock_count, struct mutex, count);
853 : : unsigned long flags;
854 : : int prev;
855 : :
856 : : spin_lock_mutex(&lock->wait_lock, flags);
857 : :
858 : : prev = atomic_xchg(&lock->count, -1);
859 : : if (likely(prev == 1)) {
860 : : mutex_set_owner(lock);
861 : : mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
862 : : }
863 : :
864 : : /* Set it back to 0 if there are no waiters: */
865 : : if (likely(list_empty(&lock->wait_list)))
866 : : atomic_set(&lock->count, 0);
867 : :
868 : : spin_unlock_mutex(&lock->wait_lock, flags);
869 : :
870 : : return prev == 1;
871 : : }
872 : :
873 : : /**
874 : : * mutex_trylock - try to acquire the mutex, without waiting
875 : : * @lock: the mutex to be acquired
876 : : *
877 : : * Try to acquire the mutex atomically. Returns 1 if the mutex
878 : : * has been acquired successfully, and 0 on contention.
879 : : *
880 : : * NOTE: this function follows the spin_trylock() convention, so
881 : : * it is negated from the down_trylock() return values! Be careful
882 : : * about this when converting semaphore users to mutexes.
883 : : *
884 : : * This function must not be used in interrupt context. The
885 : : * mutex must be released by the same task that acquired it.
886 : : */
887 : 0 : int __sched mutex_trylock(struct mutex *lock)
888 : : {
889 : : int ret;
890 : :
891 : 288434 : ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
892 [ + + ]: 288419 : if (ret)
893 : : mutex_set_owner(lock);
894 : :
895 : 0 : return ret;
896 : : }
897 : : EXPORT_SYMBOL(mutex_trylock);
898 : :
899 : : #ifndef CONFIG_DEBUG_LOCK_ALLOC
900 : : int __sched
901 : 0 : __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
902 : : {
903 : : int ret;
904 : :
905 : : might_sleep();
906 : :
907 : 0 : ret = __mutex_fastpath_lock_retval(&lock->base.count);
908 : :
909 [ # # ]: 0 : if (likely(!ret)) {
910 : : ww_mutex_set_context_fastpath(lock, ctx);
911 : : mutex_set_owner(&lock->base);
912 : : } else
913 : 0 : ret = __ww_mutex_lock_slowpath(lock, ctx);
914 : 0 : return ret;
915 : : }
916 : : EXPORT_SYMBOL(__ww_mutex_lock);
917 : :
918 : : int __sched
919 : 0 : __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
920 : : {
921 : : int ret;
922 : :
923 : : might_sleep();
924 : :
925 : 0 : ret = __mutex_fastpath_lock_retval(&lock->base.count);
926 : :
927 [ # # ]: 0 : if (likely(!ret)) {
928 : : ww_mutex_set_context_fastpath(lock, ctx);
929 : : mutex_set_owner(&lock->base);
930 : : } else
931 : 0 : ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
932 : 0 : return ret;
933 : : }
934 : : EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
935 : :
936 : : #endif
937 : :
938 : : /**
939 : : * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
940 : : * @cnt: the atomic which we are to dec
941 : : * @lock: the mutex to return holding if we dec to 0
942 : : *
943 : : * return true and hold lock if we dec to 0, return false otherwise
944 : : */
945 : 0 : int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
946 : : {
947 : : /* dec if we can't possibly hit 0 */
948 [ # # ]: 0 : if (atomic_add_unless(cnt, -1, 1))
949 : : return 0;
950 : : /* we might hit 0, so take the lock */
951 : 0 : mutex_lock(lock);
952 [ # # ]: 0 : if (!atomic_dec_and_test(cnt)) {
953 : : /* when we actually did the dec, we didn't hit 0 */
954 : 0 : mutex_unlock(lock);
955 : 0 : return 0;
956 : : }
957 : : /* we hit 0, and we hold the lock */
958 : : return 1;
959 : : }
960 : : EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
|