Branch data Line data Source code
1 : : #include <linux/module.h>
2 : : #include <linux/string.h>
3 : : #include <linux/bitops.h>
4 : : #include <linux/slab.h>
5 : : #include <linux/init.h>
6 : : #include <linux/log2.h>
7 : : #include <linux/usb.h>
8 : : #include <linux/wait.h>
9 : : #include <linux/usb/hcd.h>
10 : : #include <linux/scatterlist.h>
11 : :
12 : : #define to_urb(d) container_of(d, struct urb, kref)
13 : :
14 : :
15 : 0 : static void urb_destroy(struct kref *kref)
16 : : {
17 : : struct urb *urb = to_urb(kref);
18 : :
19 [ - + ]: 1366431 : if (urb->transfer_flags & URB_FREE_BUFFER)
20 : 0 : kfree(urb->transfer_buffer);
21 : :
22 : 1366431 : kfree(urb);
23 : 1366431 : }
24 : :
25 : : /**
26 : : * usb_init_urb - initializes a urb so that it can be used by a USB driver
27 : : * @urb: pointer to the urb to initialize
28 : : *
29 : : * Initializes a urb so that the USB subsystem can use it properly.
30 : : *
31 : : * If a urb is created with a call to usb_alloc_urb() it is not
32 : : * necessary to call this function. Only use this if you allocate the
33 : : * space for a struct urb on your own. If you call this function, be
34 : : * careful when freeing the memory for your urb that it is no longer in
35 : : * use by the USB core.
36 : : *
37 : : * Only use this function if you _really_ understand what you are doing.
38 : : */
39 : 0 : void usb_init_urb(struct urb *urb)
40 : : {
41 [ + - ][ # # ]: 1366431 : if (urb) {
42 : 1366431 : memset(urb, 0, sizeof(*urb));
43 : : kref_init(&urb->kref);
44 : 1366431 : INIT_LIST_HEAD(&urb->anchor_list);
45 : : }
46 : 0 : }
47 : : EXPORT_SYMBOL_GPL(usb_init_urb);
48 : :
49 : : /**
50 : : * usb_alloc_urb - creates a new urb for a USB driver to use
51 : : * @iso_packets: number of iso packets for this urb
52 : : * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
53 : : * valid options for this.
54 : : *
55 : : * Creates an urb for the USB driver to use, initializes a few internal
56 : : * structures, incrementes the usage counter, and returns a pointer to it.
57 : : *
58 : : * If the driver want to use this urb for interrupt, control, or bulk
59 : : * endpoints, pass '0' as the number of iso packets.
60 : : *
61 : : * The driver must call usb_free_urb() when it is finished with the urb.
62 : : *
63 : : * Return: A pointer to the new urb, or %NULL if no memory is available.
64 : : */
65 : 0 : struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
66 : : {
67 : : struct urb *urb;
68 : :
69 : 1366431 : urb = kmalloc(sizeof(struct urb) +
70 : 1366431 : iso_packets * sizeof(struct usb_iso_packet_descriptor),
71 : : mem_flags);
72 [ - + ]: 1366431 : if (!urb) {
73 : 0 : printk(KERN_ERR "alloc_urb: kmalloc failed\n");
74 : 0 : return NULL;
75 : : }
76 : : usb_init_urb(urb);
77 : 1366431 : return urb;
78 : : }
79 : : EXPORT_SYMBOL_GPL(usb_alloc_urb);
80 : :
81 : : /**
82 : : * usb_free_urb - frees the memory used by a urb when all users of it are finished
83 : : * @urb: pointer to the urb to free, may be NULL
84 : : *
85 : : * Must be called when a user of a urb is finished with it. When the last user
86 : : * of the urb calls this function, the memory of the urb is freed.
87 : : *
88 : : * Note: The transfer buffer associated with the urb is not freed unless the
89 : : * URB_FREE_BUFFER transfer flag is set.
90 : : */
91 : 0 : void usb_free_urb(struct urb *urb)
92 : : {
93 [ + - ]: 3600300 : if (urb)
94 : 3600300 : kref_put(&urb->kref, urb_destroy);
95 : 3600300 : }
96 : : EXPORT_SYMBOL_GPL(usb_free_urb);
97 : :
98 : : /**
99 : : * usb_get_urb - increments the reference count of the urb
100 : : * @urb: pointer to the urb to modify, may be NULL
101 : : *
102 : : * This must be called whenever a urb is transferred from a device driver to a
103 : : * host controller driver. This allows proper reference counting to happen
104 : : * for urbs.
105 : : *
106 : : * Return: A pointer to the urb with the incremented reference counter.
107 : : */
108 : 0 : struct urb *usb_get_urb(struct urb *urb)
109 : : {
110 [ + - ]: 2233869 : if (urb)
111 : : kref_get(&urb->kref);
112 : 2233869 : return urb;
113 : : }
114 : : EXPORT_SYMBOL_GPL(usb_get_urb);
115 : :
116 : : /**
117 : : * usb_anchor_urb - anchors an URB while it is processed
118 : : * @urb: pointer to the urb to anchor
119 : : * @anchor: pointer to the anchor
120 : : *
121 : : * This can be called to have access to URBs which are to be executed
122 : : * without bothering to track them
123 : : */
124 : 0 : void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
125 : : {
126 : : unsigned long flags;
127 : :
128 : 0 : spin_lock_irqsave(&anchor->lock, flags);
129 : 0 : usb_get_urb(urb);
130 : 0 : list_add_tail(&urb->anchor_list, &anchor->urb_list);
131 : 0 : urb->anchor = anchor;
132 : :
133 [ # # ]: 0 : if (unlikely(anchor->poisoned)) {
134 : 0 : atomic_inc(&urb->reject);
135 : : }
136 : :
137 : : spin_unlock_irqrestore(&anchor->lock, flags);
138 : 0 : }
139 : : EXPORT_SYMBOL_GPL(usb_anchor_urb);
140 : :
141 : : static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
142 : : {
143 [ # # ][ # # ]: 0 : return atomic_read(&anchor->suspend_wakeups) == 0 &&
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
144 : 0 : list_empty(&anchor->urb_list);
145 : : }
146 : :
147 : : /* Callers must hold anchor->lock */
148 : 0 : static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
149 : : {
150 : 0 : urb->anchor = NULL;
151 : : list_del(&urb->anchor_list);
152 : 0 : usb_put_urb(urb);
153 [ # # ]: 0 : if (usb_anchor_check_wakeup(anchor))
154 : 0 : wake_up(&anchor->wait);
155 : 0 : }
156 : :
157 : : /**
158 : : * usb_unanchor_urb - unanchors an URB
159 : : * @urb: pointer to the urb to anchor
160 : : *
161 : : * Call this to stop the system keeping track of this URB
162 : : */
163 : 0 : void usb_unanchor_urb(struct urb *urb)
164 : : {
165 : : unsigned long flags;
166 : : struct usb_anchor *anchor;
167 : :
168 [ + - ]: 2233869 : if (!urb)
169 : : return;
170 : :
171 : 2233869 : anchor = urb->anchor;
172 [ - + ]: 2233869 : if (!anchor)
173 : : return;
174 : :
175 : 0 : spin_lock_irqsave(&anchor->lock, flags);
176 : : /*
177 : : * At this point, we could be competing with another thread which
178 : : * has the same intention. To protect the urb from being unanchored
179 : : * twice, only the winner of the race gets the job.
180 : : */
181 [ # # ]: 0 : if (likely(anchor == urb->anchor))
182 : 0 : __usb_unanchor_urb(urb, anchor);
183 : : spin_unlock_irqrestore(&anchor->lock, flags);
184 : : }
185 : : EXPORT_SYMBOL_GPL(usb_unanchor_urb);
186 : :
187 : : /*-------------------------------------------------------------------*/
188 : :
189 : : /**
190 : : * usb_submit_urb - issue an asynchronous transfer request for an endpoint
191 : : * @urb: pointer to the urb describing the request
192 : : * @mem_flags: the type of memory to allocate, see kmalloc() for a list
193 : : * of valid options for this.
194 : : *
195 : : * This submits a transfer request, and transfers control of the URB
196 : : * describing that request to the USB subsystem. Request completion will
197 : : * be indicated later, asynchronously, by calling the completion handler.
198 : : * The three types of completion are success, error, and unlink
199 : : * (a software-induced fault, also called "request cancellation").
200 : : *
201 : : * URBs may be submitted in interrupt context.
202 : : *
203 : : * The caller must have correctly initialized the URB before submitting
204 : : * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
205 : : * available to ensure that most fields are correctly initialized, for
206 : : * the particular kind of transfer, although they will not initialize
207 : : * any transfer flags.
208 : : *
209 : : * If the submission is successful, the complete() callback from the URB
210 : : * will be called exactly once, when the USB core and Host Controller Driver
211 : : * (HCD) are finished with the URB. When the completion function is called,
212 : : * control of the URB is returned to the device driver which issued the
213 : : * request. The completion handler may then immediately free or reuse that
214 : : * URB.
215 : : *
216 : : * With few exceptions, USB device drivers should never access URB fields
217 : : * provided by usbcore or the HCD until its complete() is called.
218 : : * The exceptions relate to periodic transfer scheduling. For both
219 : : * interrupt and isochronous urbs, as part of successful URB submission
220 : : * urb->interval is modified to reflect the actual transfer period used
221 : : * (normally some power of two units). And for isochronous urbs,
222 : : * urb->start_frame is modified to reflect when the URB's transfers were
223 : : * scheduled to start.
224 : : *
225 : : * Not all isochronous transfer scheduling policies will work, but most
226 : : * host controller drivers should easily handle ISO queues going from now
227 : : * until 10-200 msec into the future. Drivers should try to keep at
228 : : * least one or two msec of data in the queue; many controllers require
229 : : * that new transfers start at least 1 msec in the future when they are
230 : : * added. If the driver is unable to keep up and the queue empties out,
231 : : * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
232 : : * If the flag is set, or if the queue is idle, then the URB is always
233 : : * assigned to the first available (and not yet expired) slot in the
234 : : * endpoint's schedule. If the flag is not set and the queue is active
235 : : * then the URB is always assigned to the next slot in the schedule
236 : : * following the end of the endpoint's previous URB, even if that slot is
237 : : * in the past. When a packet is assigned in this way to a slot that has
238 : : * already expired, the packet is not transmitted and the corresponding
239 : : * usb_iso_packet_descriptor's status field will return -EXDEV. If this
240 : : * would happen to all the packets in the URB, submission fails with a
241 : : * -EXDEV error code.
242 : : *
243 : : * For control endpoints, the synchronous usb_control_msg() call is
244 : : * often used (in non-interrupt context) instead of this call.
245 : : * That is often used through convenience wrappers, for the requests
246 : : * that are standardized in the USB 2.0 specification. For bulk
247 : : * endpoints, a synchronous usb_bulk_msg() call is available.
248 : : *
249 : : * Return:
250 : : * 0 on successful submissions. A negative error number otherwise.
251 : : *
252 : : * Request Queuing:
253 : : *
254 : : * URBs may be submitted to endpoints before previous ones complete, to
255 : : * minimize the impact of interrupt latencies and system overhead on data
256 : : * throughput. With that queuing policy, an endpoint's queue would never
257 : : * be empty. This is required for continuous isochronous data streams,
258 : : * and may also be required for some kinds of interrupt transfers. Such
259 : : * queuing also maximizes bandwidth utilization by letting USB controllers
260 : : * start work on later requests before driver software has finished the
261 : : * completion processing for earlier (successful) requests.
262 : : *
263 : : * As of Linux 2.6, all USB endpoint transfer queues support depths greater
264 : : * than one. This was previously a HCD-specific behavior, except for ISO
265 : : * transfers. Non-isochronous endpoint queues are inactive during cleanup
266 : : * after faults (transfer errors or cancellation).
267 : : *
268 : : * Reserved Bandwidth Transfers:
269 : : *
270 : : * Periodic transfers (interrupt or isochronous) are performed repeatedly,
271 : : * using the interval specified in the urb. Submitting the first urb to
272 : : * the endpoint reserves the bandwidth necessary to make those transfers.
273 : : * If the USB subsystem can't allocate sufficient bandwidth to perform
274 : : * the periodic request, submitting such a periodic request should fail.
275 : : *
276 : : * For devices under xHCI, the bandwidth is reserved at configuration time, or
277 : : * when the alt setting is selected. If there is not enough bus bandwidth, the
278 : : * configuration/alt setting request will fail. Therefore, submissions to
279 : : * periodic endpoints on devices under xHCI should never fail due to bandwidth
280 : : * constraints.
281 : : *
282 : : * Device drivers must explicitly request that repetition, by ensuring that
283 : : * some URB is always on the endpoint's queue (except possibly for short
284 : : * periods during completion callacks). When there is no longer an urb
285 : : * queued, the endpoint's bandwidth reservation is canceled. This means
286 : : * drivers can use their completion handlers to ensure they keep bandwidth
287 : : * they need, by reinitializing and resubmitting the just-completed urb
288 : : * until the driver longer needs that periodic bandwidth.
289 : : *
290 : : * Memory Flags:
291 : : *
292 : : * The general rules for how to decide which mem_flags to use
293 : : * are the same as for kmalloc. There are four
294 : : * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
295 : : * GFP_ATOMIC.
296 : : *
297 : : * GFP_NOFS is not ever used, as it has not been implemented yet.
298 : : *
299 : : * GFP_ATOMIC is used when
300 : : * (a) you are inside a completion handler, an interrupt, bottom half,
301 : : * tasklet or timer, or
302 : : * (b) you are holding a spinlock or rwlock (does not apply to
303 : : * semaphores), or
304 : : * (c) current->state != TASK_RUNNING, this is the case only after
305 : : * you've changed it.
306 : : *
307 : : * GFP_NOIO is used in the block io path and error handling of storage
308 : : * devices.
309 : : *
310 : : * All other situations use GFP_KERNEL.
311 : : *
312 : : * Some more specific rules for mem_flags can be inferred, such as
313 : : * (1) start_xmit, timeout, and receive methods of network drivers must
314 : : * use GFP_ATOMIC (they are called with a spinlock held);
315 : : * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
316 : : * called with a spinlock held);
317 : : * (3) If you use a kernel thread with a network driver you must use
318 : : * GFP_NOIO, unless (b) or (c) apply;
319 : : * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
320 : : * apply or your are in a storage driver's block io path;
321 : : * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
322 : : * (6) changing firmware on a running storage or net device uses
323 : : * GFP_NOIO, unless b) or c) apply
324 : : *
325 : : */
326 : 0 : int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
327 : : {
328 : : int xfertype, max;
329 : : struct usb_device *dev;
330 : : struct usb_host_endpoint *ep;
331 : : int is_out;
332 : :
333 [ + - ][ + - ]: 2233869 : if (!urb || !urb->complete)
334 : : return -EINVAL;
335 [ - + ]: 2233869 : if (urb->hcpriv) {
336 [ # # ][ # # ]: 0 : WARN_ONCE(1, "URB %p submitted while active\n", urb);
337 : : return -EBUSY;
338 : : }
339 : :
340 : 2233869 : dev = urb->dev;
341 [ + - ][ + - ]: 2233869 : if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
342 : : return -ENODEV;
343 : :
344 : : /* For now, get the endpoint from the pipe. Eventually drivers
345 : : * will be required to set urb->ep directly and we will eliminate
346 : : * urb->pipe.
347 : : */
348 : 2233869 : ep = usb_pipe_endpoint(dev, urb->pipe);
349 [ + - ]: 2233869 : if (!ep)
350 : : return -ENOENT;
351 : :
352 : 2233869 : urb->ep = ep;
353 : 2233869 : urb->status = -EINPROGRESS;
354 : 2233869 : urb->actual_length = 0;
355 : :
356 : : /* Lots of sanity checks, so HCDs can rely on clean data
357 : : * and don't need to duplicate tests
358 : : */
359 : 4467738 : xfertype = usb_endpoint_type(&ep->desc);
360 [ - + ]: 2233869 : if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
361 : 0 : struct usb_ctrlrequest *setup =
362 : : (struct usb_ctrlrequest *) urb->setup_packet;
363 : :
364 [ # # ]: 0 : if (!setup)
365 : : return -ENOEXEC;
366 [ # # ][ # # ]: 0 : is_out = !(setup->bRequestType & USB_DIR_IN) ||
367 : 0 : !setup->wLength;
368 : : } else {
369 : : is_out = usb_endpoint_dir_out(&ep->desc);
370 : : }
371 : :
372 : : /* Clear the internal flags and cache the direction for later use */
373 : 2233869 : urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
374 : : URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
375 : : URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
376 : : URB_DMA_SG_COMBINED);
377 [ + + ]: 2233869 : urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
378 : :
379 [ + - ][ + - ]: 2233869 : if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
380 : 2233869 : dev->state < USB_STATE_CONFIGURED)
381 : : return -ENODEV;
382 : :
383 : : max = usb_endpoint_maxp(&ep->desc);
384 [ + - ]: 2233869 : if (max <= 0) {
385 : : dev_dbg(&dev->dev,
386 : : "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
387 : : usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
388 : : __func__, max);
389 : : return -EMSGSIZE;
390 : : }
391 : :
392 : : /* periodic transfers limit size per frame/uframe,
393 : : * but drivers only control those sizes for ISO.
394 : : * while we're checking, initialize return status.
395 : : */
396 [ - + ]: 2233869 : if (xfertype == USB_ENDPOINT_XFER_ISOC) {
397 : : int n, len;
398 : :
399 : : /* SuperSpeed isoc endpoints have up to 16 bursts of up to
400 : : * 3 packets each
401 : : */
402 [ # # ]: 0 : if (dev->speed == USB_SPEED_SUPER) {
403 : 0 : int burst = 1 + ep->ss_ep_comp.bMaxBurst;
404 : 0 : int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
405 : 0 : max *= burst;
406 : 0 : max *= mult;
407 : : }
408 : :
409 : : /* "high bandwidth" mode, 1-3 packets/uframe? */
410 [ # # ]: 0 : if (dev->speed == USB_SPEED_HIGH) {
411 : 0 : int mult = 1 + ((max >> 11) & 0x03);
412 : 0 : max &= 0x07ff;
413 : 0 : max *= mult;
414 : : }
415 : :
416 [ # # ]: 0 : if (urb->number_of_packets <= 0)
417 : : return -EINVAL;
418 [ # # ]: 0 : for (n = 0; n < urb->number_of_packets; n++) {
419 : 0 : len = urb->iso_frame_desc[n].length;
420 [ # # ]: 0 : if (len < 0 || len > max)
421 : : return -EMSGSIZE;
422 : 0 : urb->iso_frame_desc[n].status = -EXDEV;
423 : 0 : urb->iso_frame_desc[n].actual_length = 0;
424 : : }
425 [ - + ][ # # ]: 2233869 : } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
[ # # ]
426 : 0 : dev->speed != USB_SPEED_WIRELESS) {
427 : : struct scatterlist *sg;
428 : : int i;
429 : :
430 [ # # ]: 0 : for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
431 [ # # ]: 0 : if (sg->length % max)
432 : : return -EINVAL;
433 : : }
434 : :
435 : : /* the I/O buffer must be mapped/unmapped, except when length=0 */
436 [ + - ]: 2233869 : if (urb->transfer_buffer_length > INT_MAX)
437 : : return -EMSGSIZE;
438 : :
439 : : #ifdef DEBUG
440 : : /* stuff that drivers shouldn't do, but which shouldn't
441 : : * cause problems in HCDs if they get it wrong.
442 : : */
443 : : {
444 : : unsigned int allowed;
445 : : static int pipetypes[4] = {
446 : : PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
447 : : };
448 : :
449 : : /* Check that the pipe's type matches the endpoint's type */
450 : : if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
451 : : dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
452 : : usb_pipetype(urb->pipe), pipetypes[xfertype]);
453 : :
454 : : /* Check against a simple/standard policy */
455 : : allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
456 : : URB_FREE_BUFFER);
457 : : switch (xfertype) {
458 : : case USB_ENDPOINT_XFER_BULK:
459 : : if (is_out)
460 : : allowed |= URB_ZERO_PACKET;
461 : : /* FALLTHROUGH */
462 : : case USB_ENDPOINT_XFER_CONTROL:
463 : : allowed |= URB_NO_FSBR; /* only affects UHCI */
464 : : /* FALLTHROUGH */
465 : : default: /* all non-iso endpoints */
466 : : if (!is_out)
467 : : allowed |= URB_SHORT_NOT_OK;
468 : : break;
469 : : case USB_ENDPOINT_XFER_ISOC:
470 : : allowed |= URB_ISO_ASAP;
471 : : break;
472 : : }
473 : : allowed &= urb->transfer_flags;
474 : :
475 : : /* warn if submitter gave bogus flags */
476 : : if (allowed != urb->transfer_flags)
477 : : dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
478 : : urb->transfer_flags, allowed);
479 : : }
480 : : #endif
481 : : /*
482 : : * Force periodic transfer intervals to be legal values that are
483 : : * a power of two (so HCDs don't need to).
484 : : *
485 : : * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
486 : : * supports different values... this uses EHCI/UHCI defaults (and
487 : : * EHCI can use smaller non-default values).
488 : : */
489 [ - + ]: 2233869 : switch (xfertype) {
490 : : case USB_ENDPOINT_XFER_ISOC:
491 : : case USB_ENDPOINT_XFER_INT:
492 : : /* too small? */
493 [ # # ]: 0 : switch (dev->speed) {
494 : : case USB_SPEED_WIRELESS:
495 [ # # ]: 0 : if (urb->interval < 6)
496 : : return -EINVAL;
497 : : break;
498 : : default:
499 [ # # ]: 0 : if (urb->interval <= 0)
500 : : return -EINVAL;
501 : : break;
502 : : }
503 : : /* too big? */
504 [ # # # # : 0 : switch (dev->speed) {
# ]
505 : : case USB_SPEED_SUPER: /* units are 125us */
506 : : /* Handle up to 2^(16-1) microframes */
507 [ # # ]: 0 : if (urb->interval > (1 << 15))
508 : : return -EINVAL;
509 : : max = 1 << 15;
510 : : break;
511 : : case USB_SPEED_WIRELESS:
512 [ # # ]: 0 : if (urb->interval > 16)
513 : : return -EINVAL;
514 : : break;
515 : : case USB_SPEED_HIGH: /* units are microframes */
516 : : /* NOTE usb handles 2^15 */
517 [ # # ]: 0 : if (urb->interval > (1024 * 8))
518 : 0 : urb->interval = 1024 * 8;
519 : : max = 1024 * 8;
520 : : break;
521 : : case USB_SPEED_FULL: /* units are frames/msec */
522 : : case USB_SPEED_LOW:
523 [ # # ]: 0 : if (xfertype == USB_ENDPOINT_XFER_INT) {
524 [ # # ]: 0 : if (urb->interval > 255)
525 : : return -EINVAL;
526 : : /* NOTE ohci only handles up to 32 */
527 : : max = 128;
528 : : } else {
529 [ # # ]: 0 : if (urb->interval > 1024)
530 : 0 : urb->interval = 1024;
531 : : /* NOTE usb and ohci handle up to 2^15 */
532 : : max = 1024;
533 : : }
534 : : break;
535 : : default:
536 : : return -EINVAL;
537 : : }
538 [ + - ]: 2233869 : if (dev->speed != USB_SPEED_WIRELESS) {
539 : : /* Round down to a power of 2, no more than max */
540 [ + - ][ - + ]: 2233869 : urb->interval = min(max, 1 << ilog2(urb->interval));
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ - - ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
541 : : }
542 : : }
543 : :
544 : 2233869 : return usb_hcd_submit_urb(urb, mem_flags);
545 : : }
546 : : EXPORT_SYMBOL_GPL(usb_submit_urb);
547 : :
548 : : /*-------------------------------------------------------------------*/
549 : :
550 : : /**
551 : : * usb_unlink_urb - abort/cancel a transfer request for an endpoint
552 : : * @urb: pointer to urb describing a previously submitted request,
553 : : * may be NULL
554 : : *
555 : : * This routine cancels an in-progress request. URBs complete only once
556 : : * per submission, and may be canceled only once per submission.
557 : : * Successful cancellation means termination of @urb will be expedited
558 : : * and the completion handler will be called with a status code
559 : : * indicating that the request has been canceled (rather than any other
560 : : * code).
561 : : *
562 : : * Drivers should not call this routine or related routines, such as
563 : : * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
564 : : * method has returned. The disconnect function should synchronize with
565 : : * a driver's I/O routines to insure that all URB-related activity has
566 : : * completed before it returns.
567 : : *
568 : : * This request is asynchronous, however the HCD might call the ->complete()
569 : : * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
570 : : * must not hold any locks that may be taken by the completion function.
571 : : * Success is indicated by returning -EINPROGRESS, at which time the URB will
572 : : * probably not yet have been given back to the device driver. When it is
573 : : * eventually called, the completion function will see @urb->status ==
574 : : * -ECONNRESET.
575 : : * Failure is indicated by usb_unlink_urb() returning any other value.
576 : : * Unlinking will fail when @urb is not currently "linked" (i.e., it was
577 : : * never submitted, or it was unlinked before, or the hardware is already
578 : : * finished with it), even if the completion handler has not yet run.
579 : : *
580 : : * The URB must not be deallocated while this routine is running. In
581 : : * particular, when a driver calls this routine, it must insure that the
582 : : * completion handler cannot deallocate the URB.
583 : : *
584 : : * Return: -EINPROGRESS on success. See description for other values on
585 : : * failure.
586 : : *
587 : : * Unlinking and Endpoint Queues:
588 : : *
589 : : * [The behaviors and guarantees described below do not apply to virtual
590 : : * root hubs but only to endpoint queues for physical USB devices.]
591 : : *
592 : : * Host Controller Drivers (HCDs) place all the URBs for a particular
593 : : * endpoint in a queue. Normally the queue advances as the controller
594 : : * hardware processes each request. But when an URB terminates with an
595 : : * error its queue generally stops (see below), at least until that URB's
596 : : * completion routine returns. It is guaranteed that a stopped queue
597 : : * will not restart until all its unlinked URBs have been fully retired,
598 : : * with their completion routines run, even if that's not until some time
599 : : * after the original completion handler returns. The same behavior and
600 : : * guarantee apply when an URB terminates because it was unlinked.
601 : : *
602 : : * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
603 : : * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
604 : : * and -EREMOTEIO. Control endpoint queues behave the same way except
605 : : * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
606 : : * for isochronous endpoints are treated differently, because they must
607 : : * advance at fixed rates. Such queues do not stop when an URB
608 : : * encounters an error or is unlinked. An unlinked isochronous URB may
609 : : * leave a gap in the stream of packets; it is undefined whether such
610 : : * gaps can be filled in.
611 : : *
612 : : * Note that early termination of an URB because a short packet was
613 : : * received will generate a -EREMOTEIO error if and only if the
614 : : * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
615 : : * drivers can build deep queues for large or complex bulk transfers
616 : : * and clean them up reliably after any sort of aborted transfer by
617 : : * unlinking all pending URBs at the first fault.
618 : : *
619 : : * When a control URB terminates with an error other than -EREMOTEIO, it
620 : : * is quite likely that the status stage of the transfer will not take
621 : : * place.
622 : : */
623 : 0 : int usb_unlink_urb(struct urb *urb)
624 : : {
625 [ # # ]: 0 : if (!urb)
626 : : return -EINVAL;
627 [ # # ]: 0 : if (!urb->dev)
628 : : return -ENODEV;
629 [ # # ]: 0 : if (!urb->ep)
630 : : return -EIDRM;
631 : 0 : return usb_hcd_unlink_urb(urb, -ECONNRESET);
632 : : }
633 : : EXPORT_SYMBOL_GPL(usb_unlink_urb);
634 : :
635 : : /**
636 : : * usb_kill_urb - cancel a transfer request and wait for it to finish
637 : : * @urb: pointer to URB describing a previously submitted request,
638 : : * may be NULL
639 : : *
640 : : * This routine cancels an in-progress request. It is guaranteed that
641 : : * upon return all completion handlers will have finished and the URB
642 : : * will be totally idle and available for reuse. These features make
643 : : * this an ideal way to stop I/O in a disconnect() callback or close()
644 : : * function. If the request has not already finished or been unlinked
645 : : * the completion handler will see urb->status == -ENOENT.
646 : : *
647 : : * While the routine is running, attempts to resubmit the URB will fail
648 : : * with error -EPERM. Thus even if the URB's completion handler always
649 : : * tries to resubmit, it will not succeed and the URB will become idle.
650 : : *
651 : : * The URB must not be deallocated while this routine is running. In
652 : : * particular, when a driver calls this routine, it must insure that the
653 : : * completion handler cannot deallocate the URB.
654 : : *
655 : : * This routine may not be used in an interrupt context (such as a bottom
656 : : * half or a completion handler), or when holding a spinlock, or in other
657 : : * situations where the caller can't schedule().
658 : : *
659 : : * This routine should not be called by a driver after its disconnect
660 : : * method has returned.
661 : : */
662 : 0 : void usb_kill_urb(struct urb *urb)
663 : : {
664 : : might_sleep();
665 [ # # ][ # # ]: 0 : if (!(urb && urb->dev && urb->ep))
[ # # ]
666 : 0 : return;
667 : 0 : atomic_inc(&urb->reject);
668 : :
669 : 0 : usb_hcd_unlink_urb(urb, -ENOENT);
670 [ # # ][ # # ]: 0 : wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
671 : :
672 : : atomic_dec(&urb->reject);
673 : : }
674 : : EXPORT_SYMBOL_GPL(usb_kill_urb);
675 : :
676 : : /**
677 : : * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
678 : : * @urb: pointer to URB describing a previously submitted request,
679 : : * may be NULL
680 : : *
681 : : * This routine cancels an in-progress request. It is guaranteed that
682 : : * upon return all completion handlers will have finished and the URB
683 : : * will be totally idle and cannot be reused. These features make
684 : : * this an ideal way to stop I/O in a disconnect() callback.
685 : : * If the request has not already finished or been unlinked
686 : : * the completion handler will see urb->status == -ENOENT.
687 : : *
688 : : * After and while the routine runs, attempts to resubmit the URB will fail
689 : : * with error -EPERM. Thus even if the URB's completion handler always
690 : : * tries to resubmit, it will not succeed and the URB will become idle.
691 : : *
692 : : * The URB must not be deallocated while this routine is running. In
693 : : * particular, when a driver calls this routine, it must insure that the
694 : : * completion handler cannot deallocate the URB.
695 : : *
696 : : * This routine may not be used in an interrupt context (such as a bottom
697 : : * half or a completion handler), or when holding a spinlock, or in other
698 : : * situations where the caller can't schedule().
699 : : *
700 : : * This routine should not be called by a driver after its disconnect
701 : : * method has returned.
702 : : */
703 : 0 : void usb_poison_urb(struct urb *urb)
704 : : {
705 : : might_sleep();
706 [ # # ]: 0 : if (!urb)
707 : : return;
708 : 0 : atomic_inc(&urb->reject);
709 : :
710 [ # # ][ # # ]: 0 : if (!urb->dev || !urb->ep)
711 : : return;
712 : :
713 : 0 : usb_hcd_unlink_urb(urb, -ENOENT);
714 [ # # ][ # # ]: 0 : wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
715 : : }
716 : : EXPORT_SYMBOL_GPL(usb_poison_urb);
717 : :
718 : 0 : void usb_unpoison_urb(struct urb *urb)
719 : : {
720 [ # # ]: 0 : if (!urb)
721 : 0 : return;
722 : :
723 : 0 : atomic_dec(&urb->reject);
724 : : }
725 : : EXPORT_SYMBOL_GPL(usb_unpoison_urb);
726 : :
727 : : /**
728 : : * usb_block_urb - reliably prevent further use of an URB
729 : : * @urb: pointer to URB to be blocked, may be NULL
730 : : *
731 : : * After the routine has run, attempts to resubmit the URB will fail
732 : : * with error -EPERM. Thus even if the URB's completion handler always
733 : : * tries to resubmit, it will not succeed and the URB will become idle.
734 : : *
735 : : * The URB must not be deallocated while this routine is running. In
736 : : * particular, when a driver calls this routine, it must insure that the
737 : : * completion handler cannot deallocate the URB.
738 : : */
739 : 0 : void usb_block_urb(struct urb *urb)
740 : : {
741 [ # # ]: 0 : if (!urb)
742 : 0 : return;
743 : :
744 : 0 : atomic_inc(&urb->reject);
745 : : }
746 : : EXPORT_SYMBOL_GPL(usb_block_urb);
747 : :
748 : : /**
749 : : * usb_kill_anchored_urbs - cancel transfer requests en masse
750 : : * @anchor: anchor the requests are bound to
751 : : *
752 : : * this allows all outstanding URBs to be killed starting
753 : : * from the back of the queue
754 : : *
755 : : * This routine should not be called by a driver after its disconnect
756 : : * method has returned.
757 : : */
758 : 0 : void usb_kill_anchored_urbs(struct usb_anchor *anchor)
759 : : {
760 : : struct urb *victim;
761 : :
762 : : spin_lock_irq(&anchor->lock);
763 [ # # ]: 0 : while (!list_empty(&anchor->urb_list)) {
764 : 0 : victim = list_entry(anchor->urb_list.prev, struct urb,
765 : : anchor_list);
766 : : /* we must make sure the URB isn't freed before we kill it*/
767 : 0 : usb_get_urb(victim);
768 : : spin_unlock_irq(&anchor->lock);
769 : : /* this will unanchor the URB */
770 : 0 : usb_kill_urb(victim);
771 : 0 : usb_put_urb(victim);
772 : : spin_lock_irq(&anchor->lock);
773 : : }
774 : : spin_unlock_irq(&anchor->lock);
775 : 0 : }
776 : : EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
777 : :
778 : :
779 : : /**
780 : : * usb_poison_anchored_urbs - cease all traffic from an anchor
781 : : * @anchor: anchor the requests are bound to
782 : : *
783 : : * this allows all outstanding URBs to be poisoned starting
784 : : * from the back of the queue. Newly added URBs will also be
785 : : * poisoned
786 : : *
787 : : * This routine should not be called by a driver after its disconnect
788 : : * method has returned.
789 : : */
790 : 0 : void usb_poison_anchored_urbs(struct usb_anchor *anchor)
791 : : {
792 : : struct urb *victim;
793 : :
794 : : spin_lock_irq(&anchor->lock);
795 : 0 : anchor->poisoned = 1;
796 [ # # ]: 0 : while (!list_empty(&anchor->urb_list)) {
797 : 0 : victim = list_entry(anchor->urb_list.prev, struct urb,
798 : : anchor_list);
799 : : /* we must make sure the URB isn't freed before we kill it*/
800 : 0 : usb_get_urb(victim);
801 : : spin_unlock_irq(&anchor->lock);
802 : : /* this will unanchor the URB */
803 : 0 : usb_poison_urb(victim);
804 : 0 : usb_put_urb(victim);
805 : : spin_lock_irq(&anchor->lock);
806 : : }
807 : : spin_unlock_irq(&anchor->lock);
808 : 0 : }
809 : : EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
810 : :
811 : : /**
812 : : * usb_unpoison_anchored_urbs - let an anchor be used successfully again
813 : : * @anchor: anchor the requests are bound to
814 : : *
815 : : * Reverses the effect of usb_poison_anchored_urbs
816 : : * the anchor can be used normally after it returns
817 : : */
818 : 0 : void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
819 : : {
820 : : unsigned long flags;
821 : : struct urb *lazarus;
822 : :
823 : 0 : spin_lock_irqsave(&anchor->lock, flags);
824 [ # # ]: 0 : list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
825 : 0 : usb_unpoison_urb(lazarus);
826 : : }
827 : 0 : anchor->poisoned = 0;
828 : : spin_unlock_irqrestore(&anchor->lock, flags);
829 : 0 : }
830 : : EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
831 : : /**
832 : : * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
833 : : * @anchor: anchor the requests are bound to
834 : : *
835 : : * this allows all outstanding URBs to be unlinked starting
836 : : * from the back of the queue. This function is asynchronous.
837 : : * The unlinking is just tiggered. It may happen after this
838 : : * function has returned.
839 : : *
840 : : * This routine should not be called by a driver after its disconnect
841 : : * method has returned.
842 : : */
843 : 0 : void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
844 : : {
845 : : struct urb *victim;
846 : :
847 [ # # ]: 0 : while ((victim = usb_get_from_anchor(anchor)) != NULL) {
848 : 0 : usb_unlink_urb(victim);
849 : 0 : usb_put_urb(victim);
850 : : }
851 : 0 : }
852 : : EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
853 : :
854 : : /**
855 : : * usb_anchor_suspend_wakeups
856 : : * @anchor: the anchor you want to suspend wakeups on
857 : : *
858 : : * Call this to stop the last urb being unanchored from waking up any
859 : : * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
860 : : * back path to delay waking up until after the completion handler has run.
861 : : */
862 : 0 : void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
863 : : {
864 [ - + ]: 2233869 : if (anchor)
865 : 0 : atomic_inc(&anchor->suspend_wakeups);
866 : 0 : }
867 : : EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
868 : :
869 : : /**
870 : : * usb_anchor_resume_wakeups
871 : : * @anchor: the anchor you want to resume wakeups on
872 : : *
873 : : * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
874 : : * wake up any current waiters if the anchor is empty.
875 : : */
876 : 0 : void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
877 : : {
878 [ - + ]: 2233869 : if (!anchor)
879 : 0 : return;
880 : :
881 : 0 : atomic_dec(&anchor->suspend_wakeups);
882 [ # # ]: 0 : if (usb_anchor_check_wakeup(anchor))
883 : 0 : wake_up(&anchor->wait);
884 : : }
885 : : EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
886 : :
887 : : /**
888 : : * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
889 : : * @anchor: the anchor you want to become unused
890 : : * @timeout: how long you are willing to wait in milliseconds
891 : : *
892 : : * Call this is you want to be sure all an anchor's
893 : : * URBs have finished
894 : : *
895 : : * Return: Non-zero if the anchor became unused. Zero on timeout.
896 : : */
897 : 0 : int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
898 : : unsigned int timeout)
899 : : {
900 [ # # ][ # # ]: 0 : return wait_event_timeout(anchor->wait,
[ # # ][ # # ]
901 : : usb_anchor_check_wakeup(anchor),
902 : : msecs_to_jiffies(timeout));
903 : : }
904 : : EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
905 : :
906 : : /**
907 : : * usb_get_from_anchor - get an anchor's oldest urb
908 : : * @anchor: the anchor whose urb you want
909 : : *
910 : : * This will take the oldest urb from an anchor,
911 : : * unanchor and return it
912 : : *
913 : : * Return: The oldest urb from @anchor, or %NULL if @anchor has no
914 : : * urbs associated with it.
915 : : */
916 : 0 : struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
917 : : {
918 : : struct urb *victim;
919 : : unsigned long flags;
920 : :
921 : 0 : spin_lock_irqsave(&anchor->lock, flags);
922 [ # # ]: 0 : if (!list_empty(&anchor->urb_list)) {
923 : 0 : victim = list_entry(anchor->urb_list.next, struct urb,
924 : : anchor_list);
925 : 0 : usb_get_urb(victim);
926 : 0 : __usb_unanchor_urb(victim, anchor);
927 : : } else {
928 : : victim = NULL;
929 : : }
930 : : spin_unlock_irqrestore(&anchor->lock, flags);
931 : :
932 : 0 : return victim;
933 : : }
934 : :
935 : : EXPORT_SYMBOL_GPL(usb_get_from_anchor);
936 : :
937 : : /**
938 : : * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
939 : : * @anchor: the anchor whose urbs you want to unanchor
940 : : *
941 : : * use this to get rid of all an anchor's urbs
942 : : */
943 : 0 : void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
944 : : {
945 : : struct urb *victim;
946 : : unsigned long flags;
947 : :
948 : 0 : spin_lock_irqsave(&anchor->lock, flags);
949 [ # # ]: 0 : while (!list_empty(&anchor->urb_list)) {
950 : 0 : victim = list_entry(anchor->urb_list.prev, struct urb,
951 : : anchor_list);
952 : 0 : __usb_unanchor_urb(victim, anchor);
953 : : }
954 : : spin_unlock_irqrestore(&anchor->lock, flags);
955 : 0 : }
956 : :
957 : : EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
958 : :
959 : : /**
960 : : * usb_anchor_empty - is an anchor empty
961 : : * @anchor: the anchor you want to query
962 : : *
963 : : * Return: 1 if the anchor has no urbs associated with it.
964 : : */
965 : 0 : int usb_anchor_empty(struct usb_anchor *anchor)
966 : : {
967 : 0 : return list_empty(&anchor->urb_list);
968 : : }
969 : :
970 : : EXPORT_SYMBOL_GPL(usb_anchor_empty);
971 : :
|