Branch data Line data Source code
1 : : /*
2 : : * message.c - synchronous message handling
3 : : */
4 : :
5 : : #include <linux/pci.h> /* for scatterlist macros */
6 : : #include <linux/usb.h>
7 : : #include <linux/module.h>
8 : : #include <linux/slab.h>
9 : : #include <linux/init.h>
10 : : #include <linux/mm.h>
11 : : #include <linux/timer.h>
12 : : #include <linux/ctype.h>
13 : : #include <linux/nls.h>
14 : : #include <linux/device.h>
15 : : #include <linux/scatterlist.h>
16 : : #include <linux/usb/quirks.h>
17 : : #include <linux/usb/hcd.h> /* for usbcore internals */
18 : : #include <asm/byteorder.h>
19 : :
20 : : #include "usb.h"
21 : :
22 : : static void cancel_async_set_config(struct usb_device *udev);
23 : :
24 : : struct api_context {
25 : : struct completion done;
26 : : int status;
27 : : };
28 : :
29 : 0 : static void usb_api_blocking_completion(struct urb *urb)
30 : : {
31 : 0 : struct api_context *ctx = urb->context;
32 : :
33 : 0 : ctx->status = urb->status;
34 : 0 : complete(&ctx->done);
35 : 0 : }
36 : :
37 : :
38 : : /*
39 : : * Starts urb and waits for completion or timeout. Note that this call
40 : : * is NOT interruptible. Many device driver i/o requests should be
41 : : * interruptible and therefore these drivers should implement their
42 : : * own interruptible routines.
43 : : */
44 : 0 : static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 : : {
46 : : struct api_context ctx;
47 : : unsigned long expire;
48 : : int retval;
49 : :
50 : : init_completion(&ctx.done);
51 : 0 : urb->context = &ctx;
52 : 0 : urb->actual_length = 0;
53 : 0 : retval = usb_submit_urb(urb, GFP_NOIO);
54 [ # # ]: 0 : if (unlikely(retval))
55 : : goto out;
56 : :
57 [ # # ]: 0 : expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 [ # # ]: 0 : if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 : 0 : usb_kill_urb(urb);
60 [ # # ]: 0 : retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 : :
62 : : dev_dbg(&urb->dev->dev,
63 : : "%s timed out on ep%d%s len=%u/%u\n",
64 : : current->comm,
65 : : usb_endpoint_num(&urb->ep->desc),
66 : : usb_urb_dir_in(urb) ? "in" : "out",
67 : : urb->actual_length,
68 : : urb->transfer_buffer_length);
69 : : } else
70 : 0 : retval = ctx.status;
71 : : out:
72 [ # # ]: 0 : if (actual_length)
73 : 0 : *actual_length = urb->actual_length;
74 : :
75 : 0 : usb_free_urb(urb);
76 : 0 : return retval;
77 : : }
78 : :
79 : : /*-------------------------------------------------------------------*/
80 : : /* returns status (negative) or length (positive) */
81 : 0 : static int usb_internal_control_msg(struct usb_device *usb_dev,
82 : : unsigned int pipe,
83 : : struct usb_ctrlrequest *cmd,
84 : : void *data, int len, int timeout)
85 : : {
86 : : struct urb *urb;
87 : : int retv;
88 : : int length;
89 : :
90 : 0 : urb = usb_alloc_urb(0, GFP_NOIO);
91 [ # # ]: 0 : if (!urb)
92 : : return -ENOMEM;
93 : :
94 : : usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 : : len, usb_api_blocking_completion, NULL);
96 : :
97 : 0 : retv = usb_start_wait_urb(urb, timeout, &length);
98 [ # # ]: 0 : if (retv < 0)
99 : : return retv;
100 : : else
101 : 0 : return length;
102 : : }
103 : :
104 : : /**
105 : : * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 : : * @dev: pointer to the usb device to send the message to
107 : : * @pipe: endpoint "pipe" to send the message to
108 : : * @request: USB message request value
109 : : * @requesttype: USB message request type value
110 : : * @value: USB message value
111 : : * @index: USB message index value
112 : : * @data: pointer to the data to send
113 : : * @size: length in bytes of the data to send
114 : : * @timeout: time in msecs to wait for the message to complete before timing
115 : : * out (if 0 the wait is forever)
116 : : *
117 : : * Context: !in_interrupt ()
118 : : *
119 : : * This function sends a simple control message to a specified endpoint and
120 : : * waits for the message to complete, or timeout.
121 : : *
122 : : * Don't use this function from within an interrupt context, like a bottom half
123 : : * handler. If you need an asynchronous message, or need to send a message
124 : : * from within interrupt context, use usb_submit_urb().
125 : : * If a thread in your driver uses this call, make sure your disconnect()
126 : : * method can wait for it to complete. Since you don't have a handle on the
127 : : * URB used, you can't cancel the request.
128 : : *
129 : : * Return: If successful, the number of bytes transferred. Otherwise, a negative
130 : : * error number.
131 : : */
132 : 0 : int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 : : __u8 requesttype, __u16 value, __u16 index, void *data,
134 : : __u16 size, int timeout)
135 : : {
136 : : struct usb_ctrlrequest *dr;
137 : : int ret;
138 : :
139 : : dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 [ # # ]: 0 : if (!dr)
141 : : return -ENOMEM;
142 : :
143 : 0 : dr->bRequestType = requesttype;
144 : 0 : dr->bRequest = request;
145 : 0 : dr->wValue = cpu_to_le16(value);
146 : 0 : dr->wIndex = cpu_to_le16(index);
147 : 0 : dr->wLength = cpu_to_le16(size);
148 : :
149 : 0 : ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
150 : :
151 : 0 : kfree(dr);
152 : :
153 : 0 : return ret;
154 : : }
155 : : EXPORT_SYMBOL_GPL(usb_control_msg);
156 : :
157 : : /**
158 : : * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
159 : : * @usb_dev: pointer to the usb device to send the message to
160 : : * @pipe: endpoint "pipe" to send the message to
161 : : * @data: pointer to the data to send
162 : : * @len: length in bytes of the data to send
163 : : * @actual_length: pointer to a location to put the actual length transferred
164 : : * in bytes
165 : : * @timeout: time in msecs to wait for the message to complete before
166 : : * timing out (if 0 the wait is forever)
167 : : *
168 : : * Context: !in_interrupt ()
169 : : *
170 : : * This function sends a simple interrupt message to a specified endpoint and
171 : : * waits for the message to complete, or timeout.
172 : : *
173 : : * Don't use this function from within an interrupt context, like a bottom half
174 : : * handler. If you need an asynchronous message, or need to send a message
175 : : * from within interrupt context, use usb_submit_urb() If a thread in your
176 : : * driver uses this call, make sure your disconnect() method can wait for it to
177 : : * complete. Since you don't have a handle on the URB used, you can't cancel
178 : : * the request.
179 : : *
180 : : * Return:
181 : : * If successful, 0. Otherwise a negative error number. The number of actual
182 : : * bytes transferred will be stored in the @actual_length paramater.
183 : : */
184 : 0 : int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
185 : : void *data, int len, int *actual_length, int timeout)
186 : : {
187 : 0 : return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
188 : : }
189 : : EXPORT_SYMBOL_GPL(usb_interrupt_msg);
190 : :
191 : : /**
192 : : * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
193 : : * @usb_dev: pointer to the usb device to send the message to
194 : : * @pipe: endpoint "pipe" to send the message to
195 : : * @data: pointer to the data to send
196 : : * @len: length in bytes of the data to send
197 : : * @actual_length: pointer to a location to put the actual length transferred
198 : : * in bytes
199 : : * @timeout: time in msecs to wait for the message to complete before
200 : : * timing out (if 0 the wait is forever)
201 : : *
202 : : * Context: !in_interrupt ()
203 : : *
204 : : * This function sends a simple bulk message to a specified endpoint
205 : : * and waits for the message to complete, or timeout.
206 : : *
207 : : * Don't use this function from within an interrupt context, like a bottom half
208 : : * handler. If you need an asynchronous message, or need to send a message
209 : : * from within interrupt context, use usb_submit_urb() If a thread in your
210 : : * driver uses this call, make sure your disconnect() method can wait for it to
211 : : * complete. Since you don't have a handle on the URB used, you can't cancel
212 : : * the request.
213 : : *
214 : : * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
215 : : * users are forced to abuse this routine by using it to submit URBs for
216 : : * interrupt endpoints. We will take the liberty of creating an interrupt URB
217 : : * (with the default interval) if the target is an interrupt endpoint.
218 : : *
219 : : * Return:
220 : : * If successful, 0. Otherwise a negative error number. The number of actual
221 : : * bytes transferred will be stored in the @actual_length paramater.
222 : : *
223 : : */
224 : 0 : int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
225 : : void *data, int len, int *actual_length, int timeout)
226 : : {
227 : : struct urb *urb;
228 : : struct usb_host_endpoint *ep;
229 : :
230 : : ep = usb_pipe_endpoint(usb_dev, pipe);
231 [ # # ]: 0 : if (!ep || len < 0)
232 : : return -EINVAL;
233 : :
234 : 0 : urb = usb_alloc_urb(0, GFP_KERNEL);
235 [ # # ]: 0 : if (!urb)
236 : : return -ENOMEM;
237 : :
238 [ # # ]: 0 : if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 : : USB_ENDPOINT_XFER_INT) {
240 : 0 : pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 : 0 : usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 : : usb_api_blocking_completion, NULL,
243 : 0 : ep->desc.bInterval);
244 : : } else
245 : : usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 : : usb_api_blocking_completion, NULL);
247 : :
248 : 0 : return usb_start_wait_urb(urb, timeout, actual_length);
249 : : }
250 : : EXPORT_SYMBOL_GPL(usb_bulk_msg);
251 : :
252 : : /*-------------------------------------------------------------------*/
253 : :
254 : 0 : static void sg_clean(struct usb_sg_request *io)
255 : : {
256 [ + - ]: 394901 : if (io->urbs) {
257 [ + + ]: 1761332 : while (io->entries--)
258 : 1366431 : usb_free_urb(io->urbs[io->entries]);
259 : 394901 : kfree(io->urbs);
260 : 394901 : io->urbs = NULL;
261 : : }
262 : 0 : io->dev = NULL;
263 : 0 : }
264 : :
265 : 0 : static void sg_complete(struct urb *urb)
266 : : {
267 : 1366431 : struct usb_sg_request *io = urb->context;
268 : 1366431 : int status = urb->status;
269 : :
270 : : spin_lock(&io->lock);
271 : :
272 : : /* In 2.5 we require hcds' endpoint queues not to progress after fault
273 : : * reports, until the completion callback (this!) returns. That lets
274 : : * device driver code (like this routine) unlink queued urbs first,
275 : : * if it needs to, since the HC won't work on them at all. So it's
276 : : * not possible for page N+1 to overwrite page N, and so on.
277 : : *
278 : : * That's only for "hard" faults; "soft" faults (unlinks) sometimes
279 : : * complete before the HCD can get requests away from hardware,
280 : : * though never during cleanup after a hard fault.
281 : : */
282 [ - + ]: 1366431 : if (io->status
283 [ # # ]: 0 : && (io->status != -ECONNRESET
284 [ # # ]: 0 : || status != -ECONNRESET)
285 [ # # ]: 0 : && urb->actual_length) {
286 [ # # ]: 0 : dev_err(io->dev->bus->controller,
287 : : "dev %s ep%d%s scatterlist error %d/%d\n",
288 : 0 : io->dev->devpath,
289 : 0 : usb_endpoint_num(&urb->ep->desc),
290 : : usb_urb_dir_in(urb) ? "in" : "out",
291 : : status, io->status);
292 : : /* BUG (); */
293 : : }
294 : :
295 [ + - ][ - + ]: 2732862 : if (io->status == 0 && status && status != -ECONNRESET) {
296 : : int i, found, retval;
297 : :
298 : 0 : io->status = status;
299 : :
300 : : /* the previous urbs, and this one, completed already.
301 : : * unlink pending urbs so they won't rx/tx bad data.
302 : : * careful: unlink can sometimes be synchronous...
303 : : */
304 : : spin_unlock(&io->lock);
305 [ # # ]: 0 : for (i = 0, found = 0; i < io->entries; i++) {
306 [ # # ][ # # ]: 0 : if (!io->urbs[i] || !io->urbs[i]->dev)
307 : 0 : continue;
308 [ # # ]: 0 : if (found) {
309 : 0 : retval = usb_unlink_urb(io->urbs[i]);
310 [ # # ]: 0 : if (retval != -EINPROGRESS &&
311 : 0 : retval != -ENODEV &&
312 [ # # ]: 0 : retval != -EBUSY &&
313 : 0 : retval != -EIDRM)
314 : 0 : dev_err(&io->dev->dev,
315 : : "%s, unlink --> %d\n",
316 : : __func__, retval);
317 [ # # ]: 0 : } else if (urb == io->urbs[i])
318 : : found = 1;
319 : : }
320 : : spin_lock(&io->lock);
321 : : }
322 : :
323 : : /* on the last completion, signal usb_sg_wait() */
324 : 1366431 : io->bytes += urb->actual_length;
325 : 1366431 : io->count--;
326 [ + + ]: 1366431 : if (!io->count)
327 : 394901 : complete(&io->complete);
328 : :
329 : : spin_unlock(&io->lock);
330 : 1366431 : }
331 : :
332 : :
333 : : /**
334 : : * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
335 : : * @io: request block being initialized. until usb_sg_wait() returns,
336 : : * treat this as a pointer to an opaque block of memory,
337 : : * @dev: the usb device that will send or receive the data
338 : : * @pipe: endpoint "pipe" used to transfer the data
339 : : * @period: polling rate for interrupt endpoints, in frames or
340 : : * (for high speed endpoints) microframes; ignored for bulk
341 : : * @sg: scatterlist entries
342 : : * @nents: how many entries in the scatterlist
343 : : * @length: how many bytes to send from the scatterlist, or zero to
344 : : * send every byte identified in the list.
345 : : * @mem_flags: SLAB_* flags affecting memory allocations in this call
346 : : *
347 : : * This initializes a scatter/gather request, allocating resources such as
348 : : * I/O mappings and urb memory (except maybe memory used by USB controller
349 : : * drivers).
350 : : *
351 : : * The request must be issued using usb_sg_wait(), which waits for the I/O to
352 : : * complete (or to be canceled) and then cleans up all resources allocated by
353 : : * usb_sg_init().
354 : : *
355 : : * The request may be canceled with usb_sg_cancel(), either before or after
356 : : * usb_sg_wait() is called.
357 : : *
358 : : * Return: Zero for success, else a negative errno value.
359 : : */
360 : 0 : int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
361 : 1366431 : unsigned pipe, unsigned period, struct scatterlist *sg,
362 : : int nents, size_t length, gfp_t mem_flags)
363 : : {
364 : : int i;
365 : : int urb_flags;
366 : : int use_sg;
367 : :
368 [ + - ][ + - ]: 394901 : if (!io || !dev || !sg
369 [ + - ]: 394901 : || usb_pipecontrol(pipe)
370 [ + - ]: 394901 : || usb_pipeisoc(pipe)
371 [ + - ]: 394901 : || nents <= 0)
372 : : return -EINVAL;
373 : :
374 : 394901 : spin_lock_init(&io->lock);
375 : 394901 : io->dev = dev;
376 : 394901 : io->pipe = pipe;
377 : :
378 [ - + ]: 394901 : if (dev->bus->sg_tablesize > 0) {
379 : : use_sg = true;
380 : 0 : io->entries = 1;
381 : : } else {
382 : : use_sg = false;
383 : 394901 : io->entries = nents;
384 : : }
385 : :
386 : : /* initialize all the urbs we'll use */
387 : 789802 : io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
388 [ + - ]: 394901 : if (!io->urbs)
389 : : goto nomem;
390 : :
391 : : urb_flags = URB_NO_INTERRUPT;
392 [ + + ]: 394901 : if (usb_pipein(pipe))
393 : : urb_flags |= URB_SHORT_NOT_OK;
394 : :
395 [ + + ]: 1761332 : for_each_sg(sg, sg, io->entries, i) {
396 : : struct urb *urb;
397 : : unsigned len;
398 : :
399 : 1366431 : urb = usb_alloc_urb(0, mem_flags);
400 [ - + ]: 1366431 : if (!urb) {
401 : 0 : io->entries = i;
402 : 0 : goto nomem;
403 : : }
404 : 1366431 : io->urbs[i] = urb;
405 : :
406 : 1366431 : urb->dev = NULL;
407 : 1366431 : urb->pipe = pipe;
408 : 1366431 : urb->interval = period;
409 : 1366431 : urb->transfer_flags = urb_flags;
410 : 1366431 : urb->complete = sg_complete;
411 : 1366431 : urb->context = io;
412 : 1366431 : urb->sg = sg;
413 : :
414 [ - + ]: 1366431 : if (use_sg) {
415 : : /* There is no single transfer buffer */
416 : 0 : urb->transfer_buffer = NULL;
417 : 0 : urb->num_sgs = nents;
418 : :
419 : : /* A length of zero means transfer the whole sg list */
420 : : len = length;
421 [ # # ]: 0 : if (len == 0) {
422 : : struct scatterlist *sg2;
423 : : int j;
424 : :
425 [ # # ]: 0 : for_each_sg(sg, sg2, nents, j)
426 : 0 : len += sg2->length;
427 : : }
428 : : } else {
429 : : /*
430 : : * Some systems can't use DMA; they use PIO instead.
431 : : * For their sakes, transfer_buffer is set whenever
432 : : * possible.
433 : : */
434 [ + - ]: 1366431 : if (!PageHighMem(sg_page(sg)))
435 : 1366431 : urb->transfer_buffer = sg_virt(sg);
436 : : else
437 : 0 : urb->transfer_buffer = NULL;
438 : :
439 : 1366431 : len = sg->length;
440 [ + - ]: 1366431 : if (length) {
441 : 1366431 : len = min_t(size_t, len, length);
442 : 1366431 : length -= len;
443 [ + + ]: 1366431 : if (length == 0)
444 : 394901 : io->entries = i + 1;
445 : : }
446 : : }
447 : 1366431 : urb->transfer_buffer_length = len;
448 : : }
449 : 394901 : io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
450 : :
451 : : /* transaction state */
452 : 394901 : io->count = io->entries;
453 : 394901 : io->status = 0;
454 : 394901 : io->bytes = 0;
455 : : init_completion(&io->complete);
456 : 394901 : return 0;
457 : :
458 : : nomem:
459 : 0 : sg_clean(io);
460 : 0 : return -ENOMEM;
461 : : }
462 : : EXPORT_SYMBOL_GPL(usb_sg_init);
463 : :
464 : : /**
465 : : * usb_sg_wait - synchronously execute scatter/gather request
466 : : * @io: request block handle, as initialized with usb_sg_init().
467 : : * some fields become accessible when this call returns.
468 : : * Context: !in_interrupt ()
469 : : *
470 : : * This function blocks until the specified I/O operation completes. It
471 : : * leverages the grouping of the related I/O requests to get good transfer
472 : : * rates, by queueing the requests. At higher speeds, such queuing can
473 : : * significantly improve USB throughput.
474 : : *
475 : : * There are three kinds of completion for this function.
476 : : * (1) success, where io->status is zero. The number of io->bytes
477 : : * transferred is as requested.
478 : : * (2) error, where io->status is a negative errno value. The number
479 : : * of io->bytes transferred before the error is usually less
480 : : * than requested, and can be nonzero.
481 : : * (3) cancellation, a type of error with status -ECONNRESET that
482 : : * is initiated by usb_sg_cancel().
483 : : *
484 : : * When this function returns, all memory allocated through usb_sg_init() or
485 : : * this call will have been freed. The request block parameter may still be
486 : : * passed to usb_sg_cancel(), or it may be freed. It could also be
487 : : * reinitialized and then reused.
488 : : *
489 : : * Data Transfer Rates:
490 : : *
491 : : * Bulk transfers are valid for full or high speed endpoints.
492 : : * The best full speed data rate is 19 packets of 64 bytes each
493 : : * per frame, or 1216 bytes per millisecond.
494 : : * The best high speed data rate is 13 packets of 512 bytes each
495 : : * per microframe, or 52 KBytes per millisecond.
496 : : *
497 : : * The reason to use interrupt transfers through this API would most likely
498 : : * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
499 : : * could be transferred. That capability is less useful for low or full
500 : : * speed interrupt endpoints, which allow at most one packet per millisecond,
501 : : * of at most 8 or 64 bytes (respectively).
502 : : *
503 : : * It is not necessary to call this function to reserve bandwidth for devices
504 : : * under an xHCI host controller, as the bandwidth is reserved when the
505 : : * configuration or interface alt setting is selected.
506 : : */
507 : 0 : void usb_sg_wait(struct usb_sg_request *io)
508 : : {
509 : : int i;
510 : 394901 : int entries = io->entries;
511 : :
512 : : /* queue the urbs. */
513 : : spin_lock_irq(&io->lock);
514 : : i = 0;
515 [ + + ][ + - ]: 1761332 : while (i < entries && !io->status) {
516 : : int retval;
517 : :
518 : 1366431 : io->urbs[i]->dev = io->dev;
519 : 1366431 : retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC);
520 : :
521 : : /* after we submit, let completions or cancelations fire;
522 : : * we handshake using io->status.
523 : : */
524 : : spin_unlock_irq(&io->lock);
525 [ - + - ]: 1366431 : switch (retval) {
526 : : /* maybe we retrying will recover */
527 : : case -ENXIO: /* hc didn't queue this one */
528 : : case -EAGAIN:
529 : : case -ENOMEM:
530 : : retval = 0;
531 : 0 : yield();
532 : 0 : break;
533 : :
534 : : /* no error? continue immediately.
535 : : *
536 : : * NOTE: to work better with UHCI (4K I/O buffer may
537 : : * need 3K of TDs) it may be good to limit how many
538 : : * URBs are queued at once; N milliseconds?
539 : : */
540 : : case 0:
541 : 1366431 : ++i;
542 : 1366431 : cpu_relax();
543 : 1366431 : break;
544 : :
545 : : /* fail any uncompleted urbs */
546 : : default:
547 : 0 : io->urbs[i]->status = retval;
548 : : dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
549 : : __func__, retval);
550 : 0 : usb_sg_cancel(io);
551 : : }
552 : : spin_lock_irq(&io->lock);
553 [ - + ][ # # ]: 1366431 : if (retval && (io->status == 0 || io->status == -ECONNRESET))
554 : 1366431 : io->status = retval;
555 : : }
556 : 394901 : io->count -= entries - i;
557 [ + + ]: 394901 : if (io->count == 0)
558 : 20 : complete(&io->complete);
559 : : spin_unlock_irq(&io->lock);
560 : :
561 : : /* OK, yes, this could be packaged as non-blocking.
562 : : * So could the submit loop above ... but it's easier to
563 : : * solve neither problem than to solve both!
564 : : */
565 : 394901 : wait_for_completion(&io->complete);
566 : :
567 : 394901 : sg_clean(io);
568 : 394901 : }
569 : : EXPORT_SYMBOL_GPL(usb_sg_wait);
570 : :
571 : : /**
572 : : * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
573 : : * @io: request block, initialized with usb_sg_init()
574 : : *
575 : : * This stops a request after it has been started by usb_sg_wait().
576 : : * It can also prevents one initialized by usb_sg_init() from starting,
577 : : * so that call just frees resources allocated to the request.
578 : : */
579 : 0 : void usb_sg_cancel(struct usb_sg_request *io)
580 : : {
581 : : unsigned long flags;
582 : :
583 : 0 : spin_lock_irqsave(&io->lock, flags);
584 : :
585 : : /* shut everything down, if it didn't already */
586 [ # # ]: 0 : if (!io->status) {
587 : : int i;
588 : :
589 : 0 : io->status = -ECONNRESET;
590 : : spin_unlock(&io->lock);
591 [ # # ]: 0 : for (i = 0; i < io->entries; i++) {
592 : : int retval;
593 : :
594 [ # # ]: 0 : if (!io->urbs[i]->dev)
595 : 0 : continue;
596 : 0 : retval = usb_unlink_urb(io->urbs[i]);
597 [ # # ]: 0 : if (retval != -EINPROGRESS
598 : 0 : && retval != -ENODEV
599 : 0 : && retval != -EBUSY
600 [ # # ]: 0 : && retval != -EIDRM)
601 : 0 : dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
602 : : __func__, retval);
603 : : }
604 : : spin_lock(&io->lock);
605 : : }
606 : : spin_unlock_irqrestore(&io->lock, flags);
607 : 0 : }
608 : : EXPORT_SYMBOL_GPL(usb_sg_cancel);
609 : :
610 : : /*-------------------------------------------------------------------*/
611 : :
612 : : /**
613 : : * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
614 : : * @dev: the device whose descriptor is being retrieved
615 : : * @type: the descriptor type (USB_DT_*)
616 : : * @index: the number of the descriptor
617 : : * @buf: where to put the descriptor
618 : : * @size: how big is "buf"?
619 : : * Context: !in_interrupt ()
620 : : *
621 : : * Gets a USB descriptor. Convenience functions exist to simplify
622 : : * getting some types of descriptors. Use
623 : : * usb_get_string() or usb_string() for USB_DT_STRING.
624 : : * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
625 : : * are part of the device structure.
626 : : * In addition to a number of USB-standard descriptors, some
627 : : * devices also use class-specific or vendor-specific descriptors.
628 : : *
629 : : * This call is synchronous, and may not be used in an interrupt context.
630 : : *
631 : : * Return: The number of bytes received on success, or else the status code
632 : : * returned by the underlying usb_control_msg() call.
633 : : */
634 : 0 : int usb_get_descriptor(struct usb_device *dev, unsigned char type,
635 : : unsigned char index, void *buf, int size)
636 : : {
637 : : int i;
638 : : int result;
639 : :
640 [ # # ]: 0 : memset(buf, 0, size); /* Make sure we parse really received data */
641 : :
642 [ # # ]: 0 : for (i = 0; i < 3; ++i) {
643 : : /* retry on length 0 or error; some devices are flakey */
644 : 0 : result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
645 : : USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
646 : : (type << 8) + index, 0, buf, size,
647 : : USB_CTRL_GET_TIMEOUT);
648 [ # # ]: 0 : if (result <= 0 && result != -ETIMEDOUT)
649 : 0 : continue;
650 [ # # ][ # # ]: 0 : if (result > 1 && ((u8 *)buf)[1] != type) {
651 : : result = -ENODATA;
652 : 0 : continue;
653 : : }
654 : : break;
655 : : }
656 : 0 : return result;
657 : : }
658 : : EXPORT_SYMBOL_GPL(usb_get_descriptor);
659 : :
660 : : /**
661 : : * usb_get_string - gets a string descriptor
662 : : * @dev: the device whose string descriptor is being retrieved
663 : : * @langid: code for language chosen (from string descriptor zero)
664 : : * @index: the number of the descriptor
665 : : * @buf: where to put the string
666 : : * @size: how big is "buf"?
667 : : * Context: !in_interrupt ()
668 : : *
669 : : * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
670 : : * in little-endian byte order).
671 : : * The usb_string() function will often be a convenient way to turn
672 : : * these strings into kernel-printable form.
673 : : *
674 : : * Strings may be referenced in device, configuration, interface, or other
675 : : * descriptors, and could also be used in vendor-specific ways.
676 : : *
677 : : * This call is synchronous, and may not be used in an interrupt context.
678 : : *
679 : : * Return: The number of bytes received on success, or else the status code
680 : : * returned by the underlying usb_control_msg() call.
681 : : */
682 : 0 : static int usb_get_string(struct usb_device *dev, unsigned short langid,
683 : : unsigned char index, void *buf, int size)
684 : : {
685 : : int i;
686 : : int result;
687 : :
688 [ # # ]: 0 : for (i = 0; i < 3; ++i) {
689 : : /* retry on length 0 or stall; some devices are flakey */
690 : 0 : result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
691 : : USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
692 : : (USB_DT_STRING << 8) + index, langid, buf, size,
693 : : USB_CTRL_GET_TIMEOUT);
694 [ # # ]: 0 : if (result == 0 || result == -EPIPE)
695 : 0 : continue;
696 [ # # ][ # # ]: 0 : if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
697 : : result = -ENODATA;
698 : 0 : continue;
699 : : }
700 : : break;
701 : : }
702 : 0 : return result;
703 : : }
704 : :
705 : 0 : static void usb_try_string_workarounds(unsigned char *buf, int *length)
706 : : {
707 : 0 : int newlength, oldlength = *length;
708 : :
709 [ # # ]: 0 : for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
710 [ # # ][ # # ]: 0 : if (!isprint(buf[newlength]) || buf[newlength + 1])
711 : : break;
712 : :
713 [ # # ]: 0 : if (newlength > 2) {
714 : 0 : buf[0] = newlength;
715 : 0 : *length = newlength;
716 : : }
717 : 0 : }
718 : :
719 : 0 : static int usb_string_sub(struct usb_device *dev, unsigned int langid,
720 : : unsigned int index, unsigned char *buf)
721 : : {
722 : : int rc;
723 : :
724 : : /* Try to read the string descriptor by asking for the maximum
725 : : * possible number of bytes */
726 [ # # ]: 0 : if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
727 : 0 : rc = -EIO;
728 : : else
729 : 0 : rc = usb_get_string(dev, langid, index, buf, 255);
730 : :
731 : : /* If that failed try to read the descriptor length, then
732 : : * ask for just that many bytes */
733 [ # # ]: 0 : if (rc < 2) {
734 : 0 : rc = usb_get_string(dev, langid, index, buf, 2);
735 [ # # ]: 0 : if (rc == 2)
736 : 0 : rc = usb_get_string(dev, langid, index, buf, buf[0]);
737 : : }
738 : :
739 [ # # ]: 0 : if (rc >= 2) {
740 [ # # ][ # # ]: 0 : if (!buf[0] && !buf[1])
741 : 0 : usb_try_string_workarounds(buf, &rc);
742 : :
743 : : /* There might be extra junk at the end of the descriptor */
744 [ # # ]: 0 : if (buf[0] < rc)
745 : 0 : rc = buf[0];
746 : :
747 : 0 : rc = rc - (rc & 1); /* force a multiple of two */
748 : : }
749 : :
750 [ # # ]: 0 : if (rc < 2)
751 [ # # ]: 0 : rc = (rc < 0 ? rc : -EINVAL);
752 : :
753 : 0 : return rc;
754 : : }
755 : :
756 : 0 : static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
757 : : {
758 : : int err;
759 : :
760 [ # # ]: 0 : if (dev->have_langid)
761 : : return 0;
762 : :
763 [ # # ]: 0 : if (dev->string_langid < 0)
764 : : return -EPIPE;
765 : :
766 : 0 : err = usb_string_sub(dev, 0, 0, tbuf);
767 : :
768 : : /* If the string was reported but is malformed, default to english
769 : : * (0x0409) */
770 [ # # ]: 0 : if (err == -ENODATA || (err > 0 && err < 4)) {
771 : 0 : dev->string_langid = 0x0409;
772 : 0 : dev->have_langid = 1;
773 : 0 : dev_err(&dev->dev,
774 : : "string descriptor 0 malformed (err = %d), "
775 : : "defaulting to 0x%04x\n",
776 : : err, dev->string_langid);
777 : 0 : return 0;
778 : : }
779 : :
780 : : /* In case of all other errors, we assume the device is not able to
781 : : * deal with strings at all. Set string_langid to -1 in order to
782 : : * prevent any string to be retrieved from the device */
783 [ # # ]: 0 : if (err < 0) {
784 : 0 : dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
785 : : err);
786 : 0 : dev->string_langid = -1;
787 : 0 : return -EPIPE;
788 : : }
789 : :
790 : : /* always use the first langid listed */
791 : 0 : dev->string_langid = tbuf[2] | (tbuf[3] << 8);
792 : 0 : dev->have_langid = 1;
793 : : dev_dbg(&dev->dev, "default language 0x%04x\n",
794 : : dev->string_langid);
795 : 0 : return 0;
796 : : }
797 : :
798 : : /**
799 : : * usb_string - returns UTF-8 version of a string descriptor
800 : : * @dev: the device whose string descriptor is being retrieved
801 : : * @index: the number of the descriptor
802 : : * @buf: where to put the string
803 : : * @size: how big is "buf"?
804 : : * Context: !in_interrupt ()
805 : : *
806 : : * This converts the UTF-16LE encoded strings returned by devices, from
807 : : * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
808 : : * that are more usable in most kernel contexts. Note that this function
809 : : * chooses strings in the first language supported by the device.
810 : : *
811 : : * This call is synchronous, and may not be used in an interrupt context.
812 : : *
813 : : * Return: length of the string (>= 0) or usb_control_msg status (< 0).
814 : : */
815 : 0 : int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
816 : : {
817 : : unsigned char *tbuf;
818 : : int err;
819 : :
820 [ # # ]: 0 : if (dev->state == USB_STATE_SUSPENDED)
821 : : return -EHOSTUNREACH;
822 [ # # ][ # # ]: 0 : if (size <= 0 || !buf || !index)
823 : : return -EINVAL;
824 : 0 : buf[0] = 0;
825 : : tbuf = kmalloc(256, GFP_NOIO);
826 [ # # ]: 0 : if (!tbuf)
827 : : return -ENOMEM;
828 : :
829 : 0 : err = usb_get_langid(dev, tbuf);
830 [ # # ]: 0 : if (err < 0)
831 : : goto errout;
832 : :
833 : 0 : err = usb_string_sub(dev, dev->string_langid, index, tbuf);
834 [ # # ]: 0 : if (err < 0)
835 : : goto errout;
836 : :
837 : 0 : size--; /* leave room for trailing NULL char in output buffer */
838 : 0 : err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
839 : : UTF16_LITTLE_ENDIAN, buf, size);
840 : 0 : buf[err] = 0;
841 : :
842 : : if (tbuf[1] != USB_DT_STRING)
843 : : dev_dbg(&dev->dev,
844 : : "wrong descriptor type %02x for string %d (\"%s\")\n",
845 : : tbuf[1], index, buf);
846 : :
847 : : errout:
848 : 0 : kfree(tbuf);
849 : 0 : return err;
850 : : }
851 : : EXPORT_SYMBOL_GPL(usb_string);
852 : :
853 : : /* one UTF-8-encoded 16-bit character has at most three bytes */
854 : : #define MAX_USB_STRING_SIZE (127 * 3 + 1)
855 : :
856 : : /**
857 : : * usb_cache_string - read a string descriptor and cache it for later use
858 : : * @udev: the device whose string descriptor is being read
859 : : * @index: the descriptor index
860 : : *
861 : : * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
862 : : * or %NULL if the index is 0 or the string could not be read.
863 : : */
864 : 0 : char *usb_cache_string(struct usb_device *udev, int index)
865 : : {
866 : : char *buf;
867 : : char *smallbuf = NULL;
868 : : int len;
869 : :
870 [ # # ]: 0 : if (index <= 0)
871 : : return NULL;
872 : :
873 : : buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
874 [ # # ]: 0 : if (buf) {
875 : 0 : len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
876 [ # # ]: 0 : if (len > 0) {
877 : 0 : smallbuf = kmalloc(++len, GFP_NOIO);
878 [ # # ]: 0 : if (!smallbuf)
879 : : return buf;
880 : 0 : memcpy(smallbuf, buf, len);
881 : : }
882 : 0 : kfree(buf);
883 : : }
884 : 0 : return smallbuf;
885 : : }
886 : :
887 : : /*
888 : : * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
889 : : * @dev: the device whose device descriptor is being updated
890 : : * @size: how much of the descriptor to read
891 : : * Context: !in_interrupt ()
892 : : *
893 : : * Updates the copy of the device descriptor stored in the device structure,
894 : : * which dedicates space for this purpose.
895 : : *
896 : : * Not exported, only for use by the core. If drivers really want to read
897 : : * the device descriptor directly, they can call usb_get_descriptor() with
898 : : * type = USB_DT_DEVICE and index = 0.
899 : : *
900 : : * This call is synchronous, and may not be used in an interrupt context.
901 : : *
902 : : * Return: The number of bytes received on success, or else the status code
903 : : * returned by the underlying usb_control_msg() call.
904 : : */
905 : 0 : int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
906 : : {
907 : : struct usb_device_descriptor *desc;
908 : : int ret;
909 : :
910 [ # # ]: 0 : if (size > sizeof(*desc))
911 : : return -EINVAL;
912 : : desc = kmalloc(sizeof(*desc), GFP_NOIO);
913 [ # # ]: 0 : if (!desc)
914 : : return -ENOMEM;
915 : :
916 : 0 : ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
917 [ # # ]: 0 : if (ret >= 0)
918 : 0 : memcpy(&dev->descriptor, desc, size);
919 : 0 : kfree(desc);
920 : 0 : return ret;
921 : : }
922 : :
923 : : /**
924 : : * usb_get_status - issues a GET_STATUS call
925 : : * @dev: the device whose status is being checked
926 : : * @type: USB_RECIP_*; for device, interface, or endpoint
927 : : * @target: zero (for device), else interface or endpoint number
928 : : * @data: pointer to two bytes of bitmap data
929 : : * Context: !in_interrupt ()
930 : : *
931 : : * Returns device, interface, or endpoint status. Normally only of
932 : : * interest to see if the device is self powered, or has enabled the
933 : : * remote wakeup facility; or whether a bulk or interrupt endpoint
934 : : * is halted ("stalled").
935 : : *
936 : : * Bits in these status bitmaps are set using the SET_FEATURE request,
937 : : * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
938 : : * function should be used to clear halt ("stall") status.
939 : : *
940 : : * This call is synchronous, and may not be used in an interrupt context.
941 : : *
942 : : * Returns 0 and the status value in *@data (in host byte order) on success,
943 : : * or else the status code from the underlying usb_control_msg() call.
944 : : */
945 : 0 : int usb_get_status(struct usb_device *dev, int type, int target, void *data)
946 : : {
947 : : int ret;
948 : : __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
949 : :
950 [ # # ]: 0 : if (!status)
951 : : return -ENOMEM;
952 : :
953 : 0 : ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
954 : : USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
955 : : sizeof(*status), USB_CTRL_GET_TIMEOUT);
956 : :
957 [ # # ]: 0 : if (ret == 2) {
958 : 0 : *(u16 *) data = le16_to_cpu(*status);
959 : : ret = 0;
960 [ # # ]: 0 : } else if (ret >= 0) {
961 : : ret = -EIO;
962 : : }
963 : 0 : kfree(status);
964 : 0 : return ret;
965 : : }
966 : : EXPORT_SYMBOL_GPL(usb_get_status);
967 : :
968 : : /**
969 : : * usb_clear_halt - tells device to clear endpoint halt/stall condition
970 : : * @dev: device whose endpoint is halted
971 : : * @pipe: endpoint "pipe" being cleared
972 : : * Context: !in_interrupt ()
973 : : *
974 : : * This is used to clear halt conditions for bulk and interrupt endpoints,
975 : : * as reported by URB completion status. Endpoints that are halted are
976 : : * sometimes referred to as being "stalled". Such endpoints are unable
977 : : * to transmit or receive data until the halt status is cleared. Any URBs
978 : : * queued for such an endpoint should normally be unlinked by the driver
979 : : * before clearing the halt condition, as described in sections 5.7.5
980 : : * and 5.8.5 of the USB 2.0 spec.
981 : : *
982 : : * Note that control and isochronous endpoints don't halt, although control
983 : : * endpoints report "protocol stall" (for unsupported requests) using the
984 : : * same status code used to report a true stall.
985 : : *
986 : : * This call is synchronous, and may not be used in an interrupt context.
987 : : *
988 : : * Return: Zero on success, or else the status code returned by the
989 : : * underlying usb_control_msg() call.
990 : : */
991 : 0 : int usb_clear_halt(struct usb_device *dev, int pipe)
992 : : {
993 : : int result;
994 : 0 : int endp = usb_pipeendpoint(pipe);
995 : :
996 [ # # ]: 0 : if (usb_pipein(pipe))
997 : 0 : endp |= USB_DIR_IN;
998 : :
999 : : /* we don't care if it wasn't halted first. in fact some devices
1000 : : * (like some ibmcam model 1 units) seem to expect hosts to make
1001 : : * this request for iso endpoints, which can't halt!
1002 : : */
1003 : 0 : result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1004 : : USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1005 : : USB_ENDPOINT_HALT, endp, NULL, 0,
1006 : : USB_CTRL_SET_TIMEOUT);
1007 : :
1008 : : /* don't un-halt or force to DATA0 except on success */
1009 [ # # ]: 0 : if (result < 0)
1010 : : return result;
1011 : :
1012 : : /* NOTE: seems like Microsoft and Apple don't bother verifying
1013 : : * the clear "took", so some devices could lock up if you check...
1014 : : * such as the Hagiwara FlashGate DUAL. So we won't bother.
1015 : : *
1016 : : * NOTE: make sure the logic here doesn't diverge much from
1017 : : * the copy in usb-storage, for as long as we need two copies.
1018 : : */
1019 : :
1020 : 0 : usb_reset_endpoint(dev, endp);
1021 : :
1022 : 0 : return 0;
1023 : : }
1024 : : EXPORT_SYMBOL_GPL(usb_clear_halt);
1025 : :
1026 : 0 : static int create_intf_ep_devs(struct usb_interface *intf)
1027 : : {
1028 : 0 : struct usb_device *udev = interface_to_usbdev(intf);
1029 : 0 : struct usb_host_interface *alt = intf->cur_altsetting;
1030 : : int i;
1031 : :
1032 [ # # ]: 0 : if (intf->ep_devs_created || intf->unregistering)
1033 : : return 0;
1034 : :
1035 [ # # ]: 0 : for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1036 : 0 : (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1037 : 0 : intf->ep_devs_created = 1;
1038 : 0 : return 0;
1039 : : }
1040 : :
1041 : 0 : static void remove_intf_ep_devs(struct usb_interface *intf)
1042 : : {
1043 : 0 : struct usb_host_interface *alt = intf->cur_altsetting;
1044 : : int i;
1045 : :
1046 [ # # ]: 0 : if (!intf->ep_devs_created)
1047 : 0 : return;
1048 : :
1049 [ # # ]: 0 : for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1050 : 0 : usb_remove_ep_devs(&alt->endpoint[i]);
1051 : 0 : intf->ep_devs_created = 0;
1052 : : }
1053 : :
1054 : : /**
1055 : : * usb_disable_endpoint -- Disable an endpoint by address
1056 : : * @dev: the device whose endpoint is being disabled
1057 : : * @epaddr: the endpoint's address. Endpoint number for output,
1058 : : * endpoint number + USB_DIR_IN for input
1059 : : * @reset_hardware: flag to erase any endpoint state stored in the
1060 : : * controller hardware
1061 : : *
1062 : : * Disables the endpoint for URB submission and nukes all pending URBs.
1063 : : * If @reset_hardware is set then also deallocates hcd/hardware state
1064 : : * for the endpoint.
1065 : : */
1066 : 0 : void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1067 : : bool reset_hardware)
1068 : : {
1069 : 0 : unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1070 : : struct usb_host_endpoint *ep;
1071 : :
1072 [ # # ]: 0 : if (!dev)
1073 : 0 : return;
1074 : :
1075 [ # # ]: 0 : if (usb_endpoint_out(epaddr)) {
1076 : 0 : ep = dev->ep_out[epnum];
1077 [ # # ]: 0 : if (reset_hardware)
1078 : 0 : dev->ep_out[epnum] = NULL;
1079 : : } else {
1080 : 0 : ep = dev->ep_in[epnum];
1081 [ # # ]: 0 : if (reset_hardware)
1082 : 0 : dev->ep_in[epnum] = NULL;
1083 : : }
1084 [ # # ]: 0 : if (ep) {
1085 : 0 : ep->enabled = 0;
1086 : 0 : usb_hcd_flush_endpoint(dev, ep);
1087 [ # # ]: 0 : if (reset_hardware)
1088 : 0 : usb_hcd_disable_endpoint(dev, ep);
1089 : : }
1090 : : }
1091 : :
1092 : : /**
1093 : : * usb_reset_endpoint - Reset an endpoint's state.
1094 : : * @dev: the device whose endpoint is to be reset
1095 : : * @epaddr: the endpoint's address. Endpoint number for output,
1096 : : * endpoint number + USB_DIR_IN for input
1097 : : *
1098 : : * Resets any host-side endpoint state such as the toggle bit,
1099 : : * sequence number or current window.
1100 : : */
1101 : 0 : void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1102 : : {
1103 : 0 : unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1104 : : struct usb_host_endpoint *ep;
1105 : :
1106 [ # # ]: 0 : if (usb_endpoint_out(epaddr))
1107 : 0 : ep = dev->ep_out[epnum];
1108 : : else
1109 : 0 : ep = dev->ep_in[epnum];
1110 [ # # ]: 0 : if (ep)
1111 : 0 : usb_hcd_reset_endpoint(dev, ep);
1112 : 0 : }
1113 : : EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1114 : :
1115 : :
1116 : : /**
1117 : : * usb_disable_interface -- Disable all endpoints for an interface
1118 : : * @dev: the device whose interface is being disabled
1119 : : * @intf: pointer to the interface descriptor
1120 : : * @reset_hardware: flag to erase any endpoint state stored in the
1121 : : * controller hardware
1122 : : *
1123 : : * Disables all the endpoints for the interface's current altsetting.
1124 : : */
1125 : 0 : void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1126 : : bool reset_hardware)
1127 : : {
1128 : 0 : struct usb_host_interface *alt = intf->cur_altsetting;
1129 : : int i;
1130 : :
1131 [ # # ]: 0 : for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1132 : 0 : usb_disable_endpoint(dev,
1133 : 0 : alt->endpoint[i].desc.bEndpointAddress,
1134 : : reset_hardware);
1135 : : }
1136 : 0 : }
1137 : :
1138 : : /**
1139 : : * usb_disable_device - Disable all the endpoints for a USB device
1140 : : * @dev: the device whose endpoints are being disabled
1141 : : * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1142 : : *
1143 : : * Disables all the device's endpoints, potentially including endpoint 0.
1144 : : * Deallocates hcd/hardware state for the endpoints (nuking all or most
1145 : : * pending urbs) and usbcore state for the interfaces, so that usbcore
1146 : : * must usb_set_configuration() before any interfaces could be used.
1147 : : */
1148 : 0 : void usb_disable_device(struct usb_device *dev, int skip_ep0)
1149 : : {
1150 : : int i;
1151 : 0 : struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1152 : :
1153 : : /* getting rid of interfaces will disconnect
1154 : : * any drivers bound to them (a key side effect)
1155 : : */
1156 [ # # ]: 0 : if (dev->actconfig) {
1157 : : /*
1158 : : * FIXME: In order to avoid self-deadlock involving the
1159 : : * bandwidth_mutex, we have to mark all the interfaces
1160 : : * before unregistering any of them.
1161 : : */
1162 [ # # ]: 0 : for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1163 : 0 : dev->actconfig->interface[i]->unregistering = 1;
1164 : :
1165 [ # # ]: 0 : for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1166 : : struct usb_interface *interface;
1167 : :
1168 : : /* remove this interface if it has been registered */
1169 : 0 : interface = dev->actconfig->interface[i];
1170 [ # # ]: 0 : if (!device_is_registered(&interface->dev))
1171 : 0 : continue;
1172 : : dev_dbg(&dev->dev, "unregistering interface %s\n",
1173 : : dev_name(&interface->dev));
1174 : 0 : remove_intf_ep_devs(interface);
1175 : 0 : device_del(&interface->dev);
1176 : : }
1177 : :
1178 : : /* Now that the interfaces are unbound, nobody should
1179 : : * try to access them.
1180 : : */
1181 [ # # ]: 0 : for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1182 : 0 : put_device(&dev->actconfig->interface[i]->dev);
1183 : 0 : dev->actconfig->interface[i] = NULL;
1184 : : }
1185 : :
1186 : : if (dev->usb2_hw_lpm_enabled == 1)
1187 : : usb_set_usb2_hardware_lpm(dev, 0);
1188 : 0 : usb_unlocked_disable_lpm(dev);
1189 : 0 : usb_disable_ltm(dev);
1190 : :
1191 : 0 : dev->actconfig = NULL;
1192 [ # # ]: 0 : if (dev->state == USB_STATE_CONFIGURED)
1193 : 0 : usb_set_device_state(dev, USB_STATE_ADDRESS);
1194 : : }
1195 : :
1196 : : dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1197 : : skip_ep0 ? "non-ep0" : "all");
1198 [ # # ]: 0 : if (hcd->driver->check_bandwidth) {
1199 : : /* First pass: Cancel URBs, leave endpoint pointers intact. */
1200 [ # # ]: 0 : for (i = skip_ep0; i < 16; ++i) {
1201 : 0 : usb_disable_endpoint(dev, i, false);
1202 : 0 : usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1203 : : }
1204 : : /* Remove endpoints from the host controller internal state */
1205 : 0 : mutex_lock(hcd->bandwidth_mutex);
1206 : 0 : usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1207 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1208 : : /* Second pass: remove endpoint pointers */
1209 : : }
1210 [ # # ]: 0 : for (i = skip_ep0; i < 16; ++i) {
1211 : 0 : usb_disable_endpoint(dev, i, true);
1212 : 0 : usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1213 : : }
1214 : 0 : }
1215 : :
1216 : : /**
1217 : : * usb_enable_endpoint - Enable an endpoint for USB communications
1218 : : * @dev: the device whose interface is being enabled
1219 : : * @ep: the endpoint
1220 : : * @reset_ep: flag to reset the endpoint state
1221 : : *
1222 : : * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1223 : : * For control endpoints, both the input and output sides are handled.
1224 : : */
1225 : 0 : void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1226 : : bool reset_ep)
1227 : : {
1228 : 0 : int epnum = usb_endpoint_num(&ep->desc);
1229 : : int is_out = usb_endpoint_dir_out(&ep->desc);
1230 : : int is_control = usb_endpoint_xfer_control(&ep->desc);
1231 : :
1232 [ # # ]: 0 : if (reset_ep)
1233 : 0 : usb_hcd_reset_endpoint(dev, ep);
1234 [ # # ]: 0 : if (is_out || is_control)
1235 : 0 : dev->ep_out[epnum] = ep;
1236 [ # # ]: 0 : if (!is_out || is_control)
1237 : 0 : dev->ep_in[epnum] = ep;
1238 : 0 : ep->enabled = 1;
1239 : 0 : }
1240 : :
1241 : : /**
1242 : : * usb_enable_interface - Enable all the endpoints for an interface
1243 : : * @dev: the device whose interface is being enabled
1244 : : * @intf: pointer to the interface descriptor
1245 : : * @reset_eps: flag to reset the endpoints' state
1246 : : *
1247 : : * Enables all the endpoints for the interface's current altsetting.
1248 : : */
1249 : 0 : void usb_enable_interface(struct usb_device *dev,
1250 : : struct usb_interface *intf, bool reset_eps)
1251 : : {
1252 : 0 : struct usb_host_interface *alt = intf->cur_altsetting;
1253 : : int i;
1254 : :
1255 [ # # ]: 0 : for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1256 : 0 : usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1257 : 0 : }
1258 : :
1259 : : /**
1260 : : * usb_set_interface - Makes a particular alternate setting be current
1261 : : * @dev: the device whose interface is being updated
1262 : : * @interface: the interface being updated
1263 : : * @alternate: the setting being chosen.
1264 : : * Context: !in_interrupt ()
1265 : : *
1266 : : * This is used to enable data transfers on interfaces that may not
1267 : : * be enabled by default. Not all devices support such configurability.
1268 : : * Only the driver bound to an interface may change its setting.
1269 : : *
1270 : : * Within any given configuration, each interface may have several
1271 : : * alternative settings. These are often used to control levels of
1272 : : * bandwidth consumption. For example, the default setting for a high
1273 : : * speed interrupt endpoint may not send more than 64 bytes per microframe,
1274 : : * while interrupt transfers of up to 3KBytes per microframe are legal.
1275 : : * Also, isochronous endpoints may never be part of an
1276 : : * interface's default setting. To access such bandwidth, alternate
1277 : : * interface settings must be made current.
1278 : : *
1279 : : * Note that in the Linux USB subsystem, bandwidth associated with
1280 : : * an endpoint in a given alternate setting is not reserved until an URB
1281 : : * is submitted that needs that bandwidth. Some other operating systems
1282 : : * allocate bandwidth early, when a configuration is chosen.
1283 : : *
1284 : : * This call is synchronous, and may not be used in an interrupt context.
1285 : : * Also, drivers must not change altsettings while urbs are scheduled for
1286 : : * endpoints in that interface; all such urbs must first be completed
1287 : : * (perhaps forced by unlinking).
1288 : : *
1289 : : * Return: Zero on success, or else the status code returned by the
1290 : : * underlying usb_control_msg() call.
1291 : : */
1292 : 0 : int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1293 : : {
1294 : : struct usb_interface *iface;
1295 : : struct usb_host_interface *alt;
1296 : 0 : struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1297 : : int ret;
1298 : : int manual = 0;
1299 : : unsigned int epaddr;
1300 : : unsigned int pipe;
1301 : :
1302 [ # # ]: 0 : if (dev->state == USB_STATE_SUSPENDED)
1303 : : return -EHOSTUNREACH;
1304 : :
1305 : 0 : iface = usb_ifnum_to_if(dev, interface);
1306 [ # # ]: 0 : if (!iface) {
1307 : : dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1308 : : interface);
1309 : : return -EINVAL;
1310 : : }
1311 [ # # ]: 0 : if (iface->unregistering)
1312 : : return -ENODEV;
1313 : :
1314 : 0 : alt = usb_altnum_to_altsetting(iface, alternate);
1315 [ # # ]: 0 : if (!alt) {
1316 : 0 : dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1317 : : alternate);
1318 : 0 : return -EINVAL;
1319 : : }
1320 : :
1321 : : /* Make sure we have enough bandwidth for this alternate interface.
1322 : : * Remove the current alt setting and add the new alt setting.
1323 : : */
1324 : 0 : mutex_lock(hcd->bandwidth_mutex);
1325 : : /* Disable LPM, and re-enable it once the new alt setting is installed,
1326 : : * so that the xHCI driver can recalculate the U1/U2 timeouts.
1327 : : */
1328 [ # # ]: 0 : if (usb_disable_lpm(dev)) {
1329 : 0 : dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1330 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1331 : 0 : return -ENOMEM;
1332 : : }
1333 : 0 : ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1334 [ # # ]: 0 : if (ret < 0) {
1335 : 0 : dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1336 : : alternate);
1337 : 0 : usb_enable_lpm(dev);
1338 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1339 : 0 : return ret;
1340 : : }
1341 : :
1342 [ # # ]: 0 : if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1343 : : ret = -EPIPE;
1344 : : else
1345 : 0 : ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1346 : : USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1347 : : alternate, interface, NULL, 0, 5000);
1348 : :
1349 : : /* 9.4.10 says devices don't need this and are free to STALL the
1350 : : * request if the interface only has one alternate setting.
1351 : : */
1352 [ # # ][ # # ]: 0 : if (ret == -EPIPE && iface->num_altsetting == 1) {
1353 : : dev_dbg(&dev->dev,
1354 : : "manual set_interface for iface %d, alt %d\n",
1355 : : interface, alternate);
1356 : : manual = 1;
1357 [ # # ]: 0 : } else if (ret < 0) {
1358 : : /* Re-instate the old alt setting */
1359 : 0 : usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1360 : 0 : usb_enable_lpm(dev);
1361 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1362 : 0 : return ret;
1363 : : }
1364 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1365 : :
1366 : : /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1367 : : * when they implement async or easily-killable versions of this or
1368 : : * other "should-be-internal" functions (like clear_halt).
1369 : : * should hcd+usbcore postprocess control requests?
1370 : : */
1371 : :
1372 : : /* prevent submissions using previous endpoint settings */
1373 [ # # ]: 0 : if (iface->cur_altsetting != alt) {
1374 : 0 : remove_intf_ep_devs(iface);
1375 : 0 : usb_remove_sysfs_intf_files(iface);
1376 : : }
1377 : 0 : usb_disable_interface(dev, iface, true);
1378 : :
1379 : 0 : iface->cur_altsetting = alt;
1380 : :
1381 : : /* Now that the interface is installed, re-enable LPM. */
1382 : 0 : usb_unlocked_enable_lpm(dev);
1383 : :
1384 : : /* If the interface only has one altsetting and the device didn't
1385 : : * accept the request, we attempt to carry out the equivalent action
1386 : : * by manually clearing the HALT feature for each endpoint in the
1387 : : * new altsetting.
1388 : : */
1389 [ # # ]: 0 : if (manual) {
1390 : : int i;
1391 : :
1392 [ # # ]: 0 : for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1393 : 0 : epaddr = alt->endpoint[i].desc.bEndpointAddress;
1394 : 0 : pipe = __create_pipe(dev,
1395 [ # # ]: 0 : USB_ENDPOINT_NUMBER_MASK & epaddr) |
1396 : 0 : (usb_endpoint_out(epaddr) ?
1397 : : USB_DIR_OUT : USB_DIR_IN);
1398 : :
1399 : 0 : usb_clear_halt(dev, pipe);
1400 : : }
1401 : : }
1402 : :
1403 : : /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1404 : : *
1405 : : * Note:
1406 : : * Despite EP0 is always present in all interfaces/AS, the list of
1407 : : * endpoints from the descriptor does not contain EP0. Due to its
1408 : : * omnipresence one might expect EP0 being considered "affected" by
1409 : : * any SetInterface request and hence assume toggles need to be reset.
1410 : : * However, EP0 toggles are re-synced for every individual transfer
1411 : : * during the SETUP stage - hence EP0 toggles are "don't care" here.
1412 : : * (Likewise, EP0 never "halts" on well designed devices.)
1413 : : */
1414 : 0 : usb_enable_interface(dev, iface, true);
1415 [ # # ]: 0 : if (device_is_registered(&iface->dev)) {
1416 : 0 : usb_create_sysfs_intf_files(iface);
1417 : 0 : create_intf_ep_devs(iface);
1418 : : }
1419 : : return 0;
1420 : : }
1421 : : EXPORT_SYMBOL_GPL(usb_set_interface);
1422 : :
1423 : : /**
1424 : : * usb_reset_configuration - lightweight device reset
1425 : : * @dev: the device whose configuration is being reset
1426 : : *
1427 : : * This issues a standard SET_CONFIGURATION request to the device using
1428 : : * the current configuration. The effect is to reset most USB-related
1429 : : * state in the device, including interface altsettings (reset to zero),
1430 : : * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1431 : : * endpoints). Other usbcore state is unchanged, including bindings of
1432 : : * usb device drivers to interfaces.
1433 : : *
1434 : : * Because this affects multiple interfaces, avoid using this with composite
1435 : : * (multi-interface) devices. Instead, the driver for each interface may
1436 : : * use usb_set_interface() on the interfaces it claims. Be careful though;
1437 : : * some devices don't support the SET_INTERFACE request, and others won't
1438 : : * reset all the interface state (notably endpoint state). Resetting the whole
1439 : : * configuration would affect other drivers' interfaces.
1440 : : *
1441 : : * The caller must own the device lock.
1442 : : *
1443 : : * Return: Zero on success, else a negative error code.
1444 : : */
1445 : 0 : int usb_reset_configuration(struct usb_device *dev)
1446 : : {
1447 : : int i, retval;
1448 : : struct usb_host_config *config;
1449 : 0 : struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1450 : :
1451 [ # # ]: 0 : if (dev->state == USB_STATE_SUSPENDED)
1452 : : return -EHOSTUNREACH;
1453 : :
1454 : : /* caller must have locked the device and must own
1455 : : * the usb bus readlock (so driver bindings are stable);
1456 : : * calls during probe() are fine
1457 : : */
1458 : :
1459 [ # # ]: 0 : for (i = 1; i < 16; ++i) {
1460 : 0 : usb_disable_endpoint(dev, i, true);
1461 : 0 : usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1462 : : }
1463 : :
1464 : 0 : config = dev->actconfig;
1465 : : retval = 0;
1466 : 0 : mutex_lock(hcd->bandwidth_mutex);
1467 : : /* Disable LPM, and re-enable it once the configuration is reset, so
1468 : : * that the xHCI driver can recalculate the U1/U2 timeouts.
1469 : : */
1470 [ # # ]: 0 : if (usb_disable_lpm(dev)) {
1471 : 0 : dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1472 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1473 : 0 : return -ENOMEM;
1474 : : }
1475 : : /* Make sure we have enough bandwidth for each alternate setting 0 */
1476 [ # # ]: 0 : for (i = 0; i < config->desc.bNumInterfaces; i++) {
1477 : 0 : struct usb_interface *intf = config->interface[i];
1478 : : struct usb_host_interface *alt;
1479 : :
1480 : 0 : alt = usb_altnum_to_altsetting(intf, 0);
1481 [ # # ]: 0 : if (!alt)
1482 : 0 : alt = &intf->altsetting[0];
1483 [ # # ]: 0 : if (alt != intf->cur_altsetting)
1484 : 0 : retval = usb_hcd_alloc_bandwidth(dev, NULL,
1485 : : intf->cur_altsetting, alt);
1486 [ # # ]: 0 : if (retval < 0)
1487 : : break;
1488 : : }
1489 : : /* If not, reinstate the old alternate settings */
1490 [ # # ]: 0 : if (retval < 0) {
1491 : : reset_old_alts:
1492 [ # # ]: 0 : for (i--; i >= 0; i--) {
1493 : 0 : struct usb_interface *intf = config->interface[i];
1494 : : struct usb_host_interface *alt;
1495 : :
1496 : 0 : alt = usb_altnum_to_altsetting(intf, 0);
1497 [ # # ]: 0 : if (!alt)
1498 : 0 : alt = &intf->altsetting[0];
1499 [ # # ]: 0 : if (alt != intf->cur_altsetting)
1500 : 0 : usb_hcd_alloc_bandwidth(dev, NULL,
1501 : : alt, intf->cur_altsetting);
1502 : : }
1503 : 0 : usb_enable_lpm(dev);
1504 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1505 : 0 : return retval;
1506 : : }
1507 : 0 : retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1508 : : USB_REQ_SET_CONFIGURATION, 0,
1509 : 0 : config->desc.bConfigurationValue, 0,
1510 : : NULL, 0, USB_CTRL_SET_TIMEOUT);
1511 [ # # ]: 0 : if (retval < 0)
1512 : : goto reset_old_alts;
1513 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1514 : :
1515 : : /* re-init hc/hcd interface/endpoint state */
1516 [ # # ]: 0 : for (i = 0; i < config->desc.bNumInterfaces; i++) {
1517 : 0 : struct usb_interface *intf = config->interface[i];
1518 : : struct usb_host_interface *alt;
1519 : :
1520 : 0 : alt = usb_altnum_to_altsetting(intf, 0);
1521 : :
1522 : : /* No altsetting 0? We'll assume the first altsetting.
1523 : : * We could use a GetInterface call, but if a device is
1524 : : * so non-compliant that it doesn't have altsetting 0
1525 : : * then I wouldn't trust its reply anyway.
1526 : : */
1527 [ # # ]: 0 : if (!alt)
1528 : 0 : alt = &intf->altsetting[0];
1529 : :
1530 [ # # ]: 0 : if (alt != intf->cur_altsetting) {
1531 : 0 : remove_intf_ep_devs(intf);
1532 : 0 : usb_remove_sysfs_intf_files(intf);
1533 : : }
1534 : 0 : intf->cur_altsetting = alt;
1535 : 0 : usb_enable_interface(dev, intf, true);
1536 [ # # ]: 0 : if (device_is_registered(&intf->dev)) {
1537 : 0 : usb_create_sysfs_intf_files(intf);
1538 : 0 : create_intf_ep_devs(intf);
1539 : : }
1540 : : }
1541 : : /* Now that the interfaces are installed, re-enable LPM. */
1542 : 0 : usb_unlocked_enable_lpm(dev);
1543 : 0 : return 0;
1544 : : }
1545 : : EXPORT_SYMBOL_GPL(usb_reset_configuration);
1546 : :
1547 : 0 : static void usb_release_interface(struct device *dev)
1548 : : {
1549 : 0 : struct usb_interface *intf = to_usb_interface(dev);
1550 : : struct usb_interface_cache *intfc =
1551 : 0 : altsetting_to_usb_interface_cache(intf->altsetting);
1552 : :
1553 : 0 : kref_put(&intfc->ref, usb_release_interface_cache);
1554 : 0 : kfree(intf);
1555 : 0 : }
1556 : :
1557 : 0 : static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1558 : : {
1559 : : struct usb_device *usb_dev;
1560 : 0 : struct usb_interface *intf;
1561 : : struct usb_host_interface *alt;
1562 : :
1563 : : intf = to_usb_interface(dev);
1564 : : usb_dev = interface_to_usbdev(intf);
1565 : 0 : alt = intf->cur_altsetting;
1566 : :
1567 [ # # ]: 0 : if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1568 : 0 : alt->desc.bInterfaceClass,
1569 : 0 : alt->desc.bInterfaceSubClass,
1570 : 0 : alt->desc.bInterfaceProtocol))
1571 : : return -ENOMEM;
1572 : :
1573 [ # # ]: 0 : if (add_uevent_var(env,
1574 : : "MODALIAS=usb:"
1575 : : "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1576 : 0 : le16_to_cpu(usb_dev->descriptor.idVendor),
1577 : 0 : le16_to_cpu(usb_dev->descriptor.idProduct),
1578 : 0 : le16_to_cpu(usb_dev->descriptor.bcdDevice),
1579 : 0 : usb_dev->descriptor.bDeviceClass,
1580 : 0 : usb_dev->descriptor.bDeviceSubClass,
1581 : 0 : usb_dev->descriptor.bDeviceProtocol,
1582 : 0 : alt->desc.bInterfaceClass,
1583 : 0 : alt->desc.bInterfaceSubClass,
1584 : 0 : alt->desc.bInterfaceProtocol,
1585 : 0 : alt->desc.bInterfaceNumber))
1586 : : return -ENOMEM;
1587 : :
1588 : 0 : return 0;
1589 : : }
1590 : :
1591 : : struct device_type usb_if_device_type = {
1592 : : .name = "usb_interface",
1593 : : .release = usb_release_interface,
1594 : : .uevent = usb_if_uevent,
1595 : : };
1596 : :
1597 : 0 : static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1598 : : struct usb_host_config *config,
1599 : : u8 inum)
1600 : : {
1601 : : struct usb_interface_assoc_descriptor *retval = NULL;
1602 : : struct usb_interface_assoc_descriptor *intf_assoc;
1603 : : int first_intf;
1604 : : int last_intf;
1605 : : int i;
1606 : :
1607 [ # # ][ # # ]: 0 : for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1608 : : intf_assoc = config->intf_assoc[i];
1609 [ # # ]: 0 : if (intf_assoc->bInterfaceCount == 0)
1610 : 0 : continue;
1611 : :
1612 : 0 : first_intf = intf_assoc->bFirstInterface;
1613 : 0 : last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1614 [ # # ][ # # ]: 0 : if (inum >= first_intf && inum <= last_intf) {
1615 [ # # ]: 0 : if (!retval)
1616 : : retval = intf_assoc;
1617 : : else
1618 : 0 : dev_err(&dev->dev, "Interface #%d referenced"
1619 : : " by multiple IADs\n", inum);
1620 : : }
1621 : : }
1622 : :
1623 : 0 : return retval;
1624 : : }
1625 : :
1626 : :
1627 : : /*
1628 : : * Internal function to queue a device reset
1629 : : *
1630 : : * This is initialized into the workstruct in 'struct
1631 : : * usb_device->reset_ws' that is launched by
1632 : : * message.c:usb_set_configuration() when initializing each 'struct
1633 : : * usb_interface'.
1634 : : *
1635 : : * It is safe to get the USB device without reference counts because
1636 : : * the life cycle of @iface is bound to the life cycle of @udev. Then,
1637 : : * this function will be ran only if @iface is alive (and before
1638 : : * freeing it any scheduled instances of it will have been cancelled).
1639 : : *
1640 : : * We need to set a flag (usb_dev->reset_running) because when we call
1641 : : * the reset, the interfaces might be unbound. The current interface
1642 : : * cannot try to remove the queued work as it would cause a deadlock
1643 : : * (you cannot remove your work from within your executing
1644 : : * workqueue). This flag lets it know, so that
1645 : : * usb_cancel_queued_reset() doesn't try to do it.
1646 : : *
1647 : : * See usb_queue_reset_device() for more details
1648 : : */
1649 : 0 : static void __usb_queue_reset_device(struct work_struct *ws)
1650 : : {
1651 : : int rc;
1652 : 0 : struct usb_interface *iface =
1653 : : container_of(ws, struct usb_interface, reset_ws);
1654 : 0 : struct usb_device *udev = interface_to_usbdev(iface);
1655 : :
1656 : 0 : rc = usb_lock_device_for_reset(udev, iface);
1657 [ # # ]: 0 : if (rc >= 0) {
1658 : 0 : iface->reset_running = 1;
1659 : 0 : usb_reset_device(udev);
1660 : 0 : iface->reset_running = 0;
1661 : : usb_unlock_device(udev);
1662 : : }
1663 : 0 : }
1664 : :
1665 : :
1666 : : /*
1667 : : * usb_set_configuration - Makes a particular device setting be current
1668 : : * @dev: the device whose configuration is being updated
1669 : : * @configuration: the configuration being chosen.
1670 : : * Context: !in_interrupt(), caller owns the device lock
1671 : : *
1672 : : * This is used to enable non-default device modes. Not all devices
1673 : : * use this kind of configurability; many devices only have one
1674 : : * configuration.
1675 : : *
1676 : : * @configuration is the value of the configuration to be installed.
1677 : : * According to the USB spec (e.g. section 9.1.1.5), configuration values
1678 : : * must be non-zero; a value of zero indicates that the device in
1679 : : * unconfigured. However some devices erroneously use 0 as one of their
1680 : : * configuration values. To help manage such devices, this routine will
1681 : : * accept @configuration = -1 as indicating the device should be put in
1682 : : * an unconfigured state.
1683 : : *
1684 : : * USB device configurations may affect Linux interoperability,
1685 : : * power consumption and the functionality available. For example,
1686 : : * the default configuration is limited to using 100mA of bus power,
1687 : : * so that when certain device functionality requires more power,
1688 : : * and the device is bus powered, that functionality should be in some
1689 : : * non-default device configuration. Other device modes may also be
1690 : : * reflected as configuration options, such as whether two ISDN
1691 : : * channels are available independently; and choosing between open
1692 : : * standard device protocols (like CDC) or proprietary ones.
1693 : : *
1694 : : * Note that a non-authorized device (dev->authorized == 0) will only
1695 : : * be put in unconfigured mode.
1696 : : *
1697 : : * Note that USB has an additional level of device configurability,
1698 : : * associated with interfaces. That configurability is accessed using
1699 : : * usb_set_interface().
1700 : : *
1701 : : * This call is synchronous. The calling context must be able to sleep,
1702 : : * must own the device lock, and must not hold the driver model's USB
1703 : : * bus mutex; usb interface driver probe() methods cannot use this routine.
1704 : : *
1705 : : * Returns zero on success, or else the status code returned by the
1706 : : * underlying call that failed. On successful completion, each interface
1707 : : * in the original device configuration has been destroyed, and each one
1708 : : * in the new configuration has been probed by all relevant usb device
1709 : : * drivers currently known to the kernel.
1710 : : */
1711 : 0 : int usb_set_configuration(struct usb_device *dev, int configuration)
1712 : : {
1713 : : int i, ret;
1714 : 0 : struct usb_host_config *cp = NULL;
1715 : : struct usb_interface **new_interfaces = NULL;
1716 : 0 : struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1717 : : int n, nintf;
1718 : :
1719 [ # # ][ # # ]: 0 : if (dev->authorized == 0 || configuration == -1)
1720 : : configuration = 0;
1721 : : else {
1722 [ # # ]: 0 : for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1723 [ # # ]: 0 : if (dev->config[i].desc.bConfigurationValue ==
1724 : : configuration) {
1725 : : cp = &dev->config[i];
1726 : : break;
1727 : : }
1728 : : }
1729 : : }
1730 [ # # ]: 0 : if ((!cp && configuration != 0))
1731 : : return -EINVAL;
1732 : :
1733 : : /* The USB spec says configuration 0 means unconfigured.
1734 : : * But if a device includes a configuration numbered 0,
1735 : : * we will accept it as a correctly configured state.
1736 : : * Use -1 if you really want to unconfigure the device.
1737 : : */
1738 [ # # ]: 0 : if (cp && configuration == 0)
1739 : 0 : dev_warn(&dev->dev, "config 0 descriptor??\n");
1740 : :
1741 : : /* Allocate memory for new interfaces before doing anything else,
1742 : : * so that if we run out then nothing will have changed. */
1743 : : n = nintf = 0;
1744 [ # # ]: 0 : if (cp) {
1745 : 0 : nintf = cp->desc.bNumInterfaces;
1746 : 0 : new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1747 : : GFP_NOIO);
1748 [ # # ]: 0 : if (!new_interfaces) {
1749 : 0 : dev_err(&dev->dev, "Out of memory\n");
1750 : 0 : return -ENOMEM;
1751 : : }
1752 : :
1753 [ # # ]: 0 : for (; n < nintf; ++n) {
1754 : 0 : new_interfaces[n] = kzalloc(
1755 : : sizeof(struct usb_interface),
1756 : : GFP_NOIO);
1757 [ # # ]: 0 : if (!new_interfaces[n]) {
1758 : 0 : dev_err(&dev->dev, "Out of memory\n");
1759 : : ret = -ENOMEM;
1760 : : free_interfaces:
1761 [ # # ]: 0 : while (--n >= 0)
1762 : 0 : kfree(new_interfaces[n]);
1763 : 0 : kfree(new_interfaces);
1764 : 0 : return ret;
1765 : : }
1766 : : }
1767 : :
1768 : 0 : i = dev->bus_mA - usb_get_max_power(dev, cp);
1769 [ # # ]: 0 : if (i < 0)
1770 : 0 : dev_warn(&dev->dev, "new config #%d exceeds power "
1771 : : "limit by %dmA\n",
1772 : : configuration, -i);
1773 : : }
1774 : :
1775 : : /* Wake up the device so we can send it the Set-Config request */
1776 : : ret = usb_autoresume_device(dev);
1777 : : if (ret)
1778 : : goto free_interfaces;
1779 : :
1780 : : /* if it's already configured, clear out old state first.
1781 : : * getting rid of old interfaces means unbinding their drivers.
1782 : : */
1783 [ # # ]: 0 : if (dev->state != USB_STATE_ADDRESS)
1784 : 0 : usb_disable_device(dev, 1); /* Skip ep0 */
1785 : :
1786 : : /* Get rid of pending async Set-Config requests for this device */
1787 : 0 : cancel_async_set_config(dev);
1788 : :
1789 : : /* Make sure we have bandwidth (and available HCD resources) for this
1790 : : * configuration. Remove endpoints from the schedule if we're dropping
1791 : : * this configuration to set configuration 0. After this point, the
1792 : : * host controller will not allow submissions to dropped endpoints. If
1793 : : * this call fails, the device state is unchanged.
1794 : : */
1795 : 0 : mutex_lock(hcd->bandwidth_mutex);
1796 : : /* Disable LPM, and re-enable it once the new configuration is
1797 : : * installed, so that the xHCI driver can recalculate the U1/U2
1798 : : * timeouts.
1799 : : */
1800 [ # # ][ # # ]: 0 : if (dev->actconfig && usb_disable_lpm(dev)) {
1801 : 0 : dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1802 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1803 : : ret = -ENOMEM;
1804 : 0 : goto free_interfaces;
1805 : : }
1806 : 0 : ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1807 [ # # ]: 0 : if (ret < 0) {
1808 [ # # ]: 0 : if (dev->actconfig)
1809 : 0 : usb_enable_lpm(dev);
1810 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1811 : : usb_autosuspend_device(dev);
1812 : 0 : goto free_interfaces;
1813 : : }
1814 : :
1815 : : /*
1816 : : * Initialize the new interface structures and the
1817 : : * hc/hcd/usbcore interface/endpoint state.
1818 : : */
1819 [ # # ]: 0 : for (i = 0; i < nintf; ++i) {
1820 : : struct usb_interface_cache *intfc;
1821 : : struct usb_interface *intf;
1822 : : struct usb_host_interface *alt;
1823 : :
1824 : 0 : cp->interface[i] = intf = new_interfaces[i];
1825 : 0 : intfc = cp->intf_cache[i];
1826 : 0 : intf->altsetting = intfc->altsetting;
1827 : 0 : intf->num_altsetting = intfc->num_altsetting;
1828 : : kref_get(&intfc->ref);
1829 : :
1830 : 0 : alt = usb_altnum_to_altsetting(intf, 0);
1831 : :
1832 : : /* No altsetting 0? We'll assume the first altsetting.
1833 : : * We could use a GetInterface call, but if a device is
1834 : : * so non-compliant that it doesn't have altsetting 0
1835 : : * then I wouldn't trust its reply anyway.
1836 : : */
1837 [ # # ]: 0 : if (!alt)
1838 : 0 : alt = &intf->altsetting[0];
1839 : :
1840 : 0 : intf->intf_assoc =
1841 : 0 : find_iad(dev, cp, alt->desc.bInterfaceNumber);
1842 : 0 : intf->cur_altsetting = alt;
1843 : 0 : usb_enable_interface(dev, intf, true);
1844 : 0 : intf->dev.parent = &dev->dev;
1845 : 0 : intf->dev.driver = NULL;
1846 : 0 : intf->dev.bus = &usb_bus_type;
1847 : 0 : intf->dev.type = &usb_if_device_type;
1848 : 0 : intf->dev.groups = usb_interface_groups;
1849 : 0 : intf->dev.dma_mask = dev->dev.dma_mask;
1850 : 0 : INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1851 : 0 : intf->minor = -1;
1852 : 0 : device_initialize(&intf->dev);
1853 : : pm_runtime_no_callbacks(&intf->dev);
1854 : 0 : dev_set_name(&intf->dev, "%d-%s:%d.%d",
1855 : 0 : dev->bus->busnum, dev->devpath,
1856 : 0 : configuration, alt->desc.bInterfaceNumber);
1857 : : }
1858 : 0 : kfree(new_interfaces);
1859 : :
1860 : 0 : ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1861 : : USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1862 : : NULL, 0, USB_CTRL_SET_TIMEOUT);
1863 [ # # ]: 0 : if (ret < 0 && cp) {
1864 : : /*
1865 : : * All the old state is gone, so what else can we do?
1866 : : * The device is probably useless now anyway.
1867 : : */
1868 : 0 : usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1869 [ # # ]: 0 : for (i = 0; i < nintf; ++i) {
1870 : 0 : usb_disable_interface(dev, cp->interface[i], true);
1871 : 0 : put_device(&cp->interface[i]->dev);
1872 : 0 : cp->interface[i] = NULL;
1873 : : }
1874 : : cp = NULL;
1875 : : }
1876 : :
1877 : 0 : dev->actconfig = cp;
1878 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1879 : :
1880 [ # # ]: 0 : if (!cp) {
1881 : 0 : usb_set_device_state(dev, USB_STATE_ADDRESS);
1882 : :
1883 : : /* Leave LPM disabled while the device is unconfigured. */
1884 : : usb_autosuspend_device(dev);
1885 : 0 : return ret;
1886 : : }
1887 : 0 : usb_set_device_state(dev, USB_STATE_CONFIGURED);
1888 : :
1889 [ # # ][ # # ]: 0 : if (cp->string == NULL &&
1890 : 0 : !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1891 : 0 : cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1892 : :
1893 : : /* Now that the interfaces are installed, re-enable LPM. */
1894 : 0 : usb_unlocked_enable_lpm(dev);
1895 : : /* Enable LTM if it was turned off by usb_disable_device. */
1896 : 0 : usb_enable_ltm(dev);
1897 : :
1898 : : /* Now that all the interfaces are set up, register them
1899 : : * to trigger binding of drivers to interfaces. probe()
1900 : : * routines may install different altsettings and may
1901 : : * claim() any interfaces not yet bound. Many class drivers
1902 : : * need that: CDC, audio, video, etc.
1903 : : */
1904 [ # # ]: 0 : for (i = 0; i < nintf; ++i) {
1905 : 0 : struct usb_interface *intf = cp->interface[i];
1906 : :
1907 : : dev_dbg(&dev->dev,
1908 : : "adding %s (config #%d, interface %d)\n",
1909 : : dev_name(&intf->dev), configuration,
1910 : : intf->cur_altsetting->desc.bInterfaceNumber);
1911 : : device_enable_async_suspend(&intf->dev);
1912 : 0 : ret = device_add(&intf->dev);
1913 [ # # ]: 0 : if (ret != 0) {
1914 : 0 : dev_err(&dev->dev, "device_add(%s) --> %d\n",
1915 : : dev_name(&intf->dev), ret);
1916 : 0 : continue;
1917 : : }
1918 : 0 : create_intf_ep_devs(intf);
1919 : : }
1920 : :
1921 : : usb_autosuspend_device(dev);
1922 : : return 0;
1923 : : }
1924 : :
1925 : : static LIST_HEAD(set_config_list);
1926 : : static DEFINE_SPINLOCK(set_config_lock);
1927 : :
1928 : : struct set_config_request {
1929 : : struct usb_device *udev;
1930 : : int config;
1931 : : struct work_struct work;
1932 : : struct list_head node;
1933 : : };
1934 : :
1935 : : /* Worker routine for usb_driver_set_configuration() */
1936 : 0 : static void driver_set_config_work(struct work_struct *work)
1937 : : {
1938 : 0 : struct set_config_request *req =
1939 : : container_of(work, struct set_config_request, work);
1940 : 0 : struct usb_device *udev = req->udev;
1941 : :
1942 : : usb_lock_device(udev);
1943 : : spin_lock(&set_config_lock);
1944 : : list_del(&req->node);
1945 : : spin_unlock(&set_config_lock);
1946 : :
1947 [ # # ]: 0 : if (req->config >= -1) /* Is req still valid? */
1948 : 0 : usb_set_configuration(udev, req->config);
1949 : : usb_unlock_device(udev);
1950 : 0 : usb_put_dev(udev);
1951 : 0 : kfree(req);
1952 : 0 : }
1953 : :
1954 : : /* Cancel pending Set-Config requests for a device whose configuration
1955 : : * was just changed
1956 : : */
1957 : 0 : static void cancel_async_set_config(struct usb_device *udev)
1958 : : {
1959 : : struct set_config_request *req;
1960 : :
1961 : : spin_lock(&set_config_lock);
1962 [ # # ]: 0 : list_for_each_entry(req, &set_config_list, node) {
1963 [ # # ]: 0 : if (req->udev == udev)
1964 : 0 : req->config = -999; /* Mark as cancelled */
1965 : : }
1966 : : spin_unlock(&set_config_lock);
1967 : 0 : }
1968 : :
1969 : : /**
1970 : : * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1971 : : * @udev: the device whose configuration is being updated
1972 : : * @config: the configuration being chosen.
1973 : : * Context: In process context, must be able to sleep
1974 : : *
1975 : : * Device interface drivers are not allowed to change device configurations.
1976 : : * This is because changing configurations will destroy the interface the
1977 : : * driver is bound to and create new ones; it would be like a floppy-disk
1978 : : * driver telling the computer to replace the floppy-disk drive with a
1979 : : * tape drive!
1980 : : *
1981 : : * Still, in certain specialized circumstances the need may arise. This
1982 : : * routine gets around the normal restrictions by using a work thread to
1983 : : * submit the change-config request.
1984 : : *
1985 : : * Return: 0 if the request was successfully queued, error code otherwise.
1986 : : * The caller has no way to know whether the queued request will eventually
1987 : : * succeed.
1988 : : */
1989 : 0 : int usb_driver_set_configuration(struct usb_device *udev, int config)
1990 : : {
1991 : : struct set_config_request *req;
1992 : :
1993 : : req = kmalloc(sizeof(*req), GFP_KERNEL);
1994 [ # # ]: 0 : if (!req)
1995 : : return -ENOMEM;
1996 : 0 : req->udev = udev;
1997 : 0 : req->config = config;
1998 : 0 : INIT_WORK(&req->work, driver_set_config_work);
1999 : :
2000 : : spin_lock(&set_config_lock);
2001 : 0 : list_add(&req->node, &set_config_list);
2002 : : spin_unlock(&set_config_lock);
2003 : :
2004 : 0 : usb_get_dev(udev);
2005 : 0 : schedule_work(&req->work);
2006 : 0 : return 0;
2007 : : }
2008 : : EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
|