Branch data Line data Source code
1 : : #ifndef FWH_LOCK_H
2 : : #define FWH_LOCK_H
3 : :
4 : :
5 : : enum fwh_lock_state {
6 : : FWH_UNLOCKED = 0,
7 : : FWH_DENY_WRITE = 1,
8 : : FWH_IMMUTABLE = 2,
9 : : FWH_DENY_READ = 4,
10 : : };
11 : :
12 : : struct fwh_xxlock_thunk {
13 : : enum fwh_lock_state val;
14 : : flstate_t state;
15 : : };
16 : :
17 : :
18 : : #define FWH_XXLOCK_ONEBLOCK_LOCK ((struct fwh_xxlock_thunk){ FWH_DENY_WRITE, FL_LOCKING})
19 : : #define FWH_XXLOCK_ONEBLOCK_UNLOCK ((struct fwh_xxlock_thunk){ FWH_UNLOCKED, FL_UNLOCKING})
20 : :
21 : : /*
22 : : * This locking/unlock is specific to firmware hub parts. Only one
23 : : * is known that supports the Intel command set. Firmware
24 : : * hub parts cannot be interleaved as they are on the LPC bus
25 : : * so this code has not been tested with interleaved chips,
26 : : * and will likely fail in that context.
27 : : */
28 : 0 : static int fwh_xxlock_oneblock(struct map_info *map, struct flchip *chip,
29 : : unsigned long adr, int len, void *thunk)
30 : : {
31 : 0 : struct cfi_private *cfi = map->fldrv_priv;
32 : : struct fwh_xxlock_thunk *xxlt = (struct fwh_xxlock_thunk *)thunk;
33 : : int ret;
34 : :
35 : : /* Refuse the operation if the we cannot look behind the chip */
36 [ # # ]: 0 : if (chip->start < 0x400000) {
37 : : pr_debug( "MTD %s(): chip->start: %lx wanted >= 0x400000\n",
38 : : __func__, chip->start );
39 : : return -EIO;
40 : : }
41 : : /*
42 : : * lock block registers:
43 : : * - on 64k boundariesand
44 : : * - bit 1 set high
45 : : * - block lock registers are 4MiB lower - overflow subtract (danger)
46 : : *
47 : : * The address manipulation is first done on the logical address
48 : : * which is 0 at the start of the chip, and then the offset of
49 : : * the individual chip is addted to it. Any other order a weird
50 : : * map offset could cause problems.
51 : : */
52 : 0 : adr = (adr & ~0xffffUL) | 0x2;
53 : 0 : adr += chip->start - 0x400000;
54 : :
55 : : /*
56 : : * This is easy because these are writes to registers and not writes
57 : : * to flash memory - that means that we don't have to check status
58 : : * and timeout.
59 : : */
60 : 0 : mutex_lock(&chip->mutex);
61 : 0 : ret = get_chip(map, chip, adr, FL_LOCKING);
62 [ # # ]: 0 : if (ret) {
63 : 0 : mutex_unlock(&chip->mutex);
64 : 0 : return ret;
65 : : }
66 : :
67 : 0 : chip->oldstate = chip->state;
68 : 0 : chip->state = xxlt->state;
69 : 0 : map_write(map, CMD(xxlt->val), adr);
70 : :
71 : : /* Done and happy. */
72 : 0 : chip->state = chip->oldstate;
73 : 0 : put_chip(map, chip, adr);
74 : 0 : mutex_unlock(&chip->mutex);
75 : 0 : return 0;
76 : : }
77 : :
78 : :
79 : 0 : static int fwh_lock_varsize(struct mtd_info *mtd, loff_t ofs, uint64_t len)
80 : : {
81 : : int ret;
82 : :
83 : 0 : ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len,
84 : 0 : (void *)&FWH_XXLOCK_ONEBLOCK_LOCK);
85 : :
86 : 0 : return ret;
87 : : }
88 : :
89 : :
90 : 0 : static int fwh_unlock_varsize(struct mtd_info *mtd, loff_t ofs, uint64_t len)
91 : : {
92 : : int ret;
93 : :
94 : 0 : ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len,
95 : 0 : (void *)&FWH_XXLOCK_ONEBLOCK_UNLOCK);
96 : :
97 : 0 : return ret;
98 : : }
99 : :
100 : 0 : static void fixup_use_fwh_lock(struct mtd_info *mtd)
101 : : {
102 : 0 : printk(KERN_NOTICE "using fwh lock/unlock method\n");
103 : : /* Setup for the chips with the fwh lock method */
104 : 0 : mtd->_lock = fwh_lock_varsize;
105 : 0 : mtd->_unlock = fwh_unlock_varsize;
106 : 0 : }
107 : : #endif /* FWH_LOCK_H */
|