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Abstract

In this work, we break the promised normal world to secure world isolation on
ARM TrustZone. We attack the OP-TEE implementation of TrustZone in three
phases. Firstly, we load a malicious, self-signed Trusted Application (TA) on the
secure world side. To do this, we propose a register-cleaning fault attack through
electromagnetic (EM) pulse injections, following a completely non-invasive EM
triggering mechanism. In the second phase, we take advantage of an empirical
observation- OP-TEE prefers opening sessions with non-persistent TA than it
does with persistent TA, if both share the same Universally Unique Identifier
(UUID). From the malicious TA installed in the first phase, the adversary forces
the UUID to be that of another TA already installed in the secure world, thereby
effectively mounting a Man-in-the-middle attack. Lastly, we use carefully timed
EM injections to force SIGSEGV signals to be sent to otherwise correct execu-
tions, forcing new execution paths causing coredumps which leak encryption and
signing keys (assuming encryption and source-authentication in place for normal
world to secure world communication). We demonstrate the entire end-to-end
attack to gain unauthorized access to a Machine-Learning-as-a-Service (MLaaS)
server running inside the ARM TrustZone. Finally, we propose entirely software
based countermeasures to prevent all three attack vectors.

1 Introduction

The Internet-of-Things (IoTs) has become an essential part of modern indus-
try, catering to millions of users with critical services. Naturally, the question
of security in the IoT hemisphere has risen in the past years. With the in-
creasing ability of attackers to compromise systems, even the most privileged
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of all softwares (i.e. the kernel) has come to be viewed with doubt. To counter
this, the security community has been gradually shifting its root-of-trust to
hardware backed mechanisms. Examples of such hardware backed security so-
lutions from major chip manufacturers include the ARM TrustZone, Intel’s SGX
(Software Guard Extensions) and TDX (Trusted Domain Extensions), AMD’s
PSP (Platform Security Processor). While specifics of these solutions vary, the
core idea is to partition resources on a System-on-Chip (SoC) into a trusted
and an untrusted execution environment and shifting critical executions to the
trusted environment. And doing this isolation with the help of the hardware
adds another layer of security: if an adversary compromises the kernel on the
untrusted part, there is still a line of defence before the security-critical data
is compromised. In this paper, we focus exclusively on ARM TrustZone [1].
ARM Trustzone has been an integral part of ARM chipsets since ARMv6 1,
including Cortex-A (for mobile devices) and Cortex-M (for IoT devices) family
of processors. The TrustZone provides an execution context for security-critical
applications such as user authentication, mobile payment, etc. It essentially par-
titions the System-on-Chip hardware and software into two virtual execution
environments: secure world or Trusted Execution Environment (TEE)
and normal world or Rich Execution Environment (REE). Applications
running in REE are called client applications (CAs), while the ones running
in TEE are called trusted applications (TAs). The REE supports a complex
software stack and thus can be prone to severe software bugs leading to leakage
sources. In this context, TEE provides the necessary isolation guarantee such
that the integrity and confidentiality of sensitive data are not compromised.
Shared hardware resources such as storage, peripherals, etc. are made private
to each world through hardware-powered mechanisms [2, 3].

1.1 Protections for TAs in ARM TrustZone

Hardware backed isolation such as ARM TrustZone is also a natural solution
to the problem of protecting security critical computation in the context of IoT
edge nodes running on SoCs [4,5]. We have identified several features- both in-
herent to ARM TrustZone as well as belonging to third-party extensions- which
provide sound security to a TA’s operations. Briefly, such features come in two
dimensions along which security is desirable: 1○ securing the communication
channel(s) between a TA and a CA, and 2○ ensuring the resource partitioned
to a TA actually remains inaccessible to other TAs/CAs.

1.1.1 Security in dimension 1○

Communication flow in the setting we are exploring is: end-user ⇄ CA(s) ⇄
TA(s). There are a few problems related to this communication channel’s pri-
vacy, which we list next. We also list solutions to these problems. Note that
since none of the proposed solutions are inherent to ARM TrustZone, we rely
on third-party security extensions when required.

1The current ARM version used in a majority of processors is ARMv8.
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Achieving source authentication. We assume presence of a Gatekeeper
TA, in line with the proposal in [6]. Our experimental platform is OP-TEE,
which we introduce later in Sec. 2. For now, it suffices to note that the reason
of choosing this design is because it was put forth by the very team developing
OP-TEE. Concretely, a Gatekeeper TA stands at the gate between the REE
and TEE on ARM TrustZone (refer Sec 5.1 for details on Gatekeeper architec-
ture). Only if a CA authenticates itself to this Gatekeeper TA, it is allowed to
communicate with a TA of its choosing.

Achieving granular access control. In a production environment, a TA
should not be accessible by CA(s) which it does not, to some degree, trust. The
Gatekeeper TA [6] does not have this ability of choosing which CA can com-
municate with it. Therefore, we rely on another third-party security extension
SeCReT [7] (or SeCReT ’s production-system friendly sibling [8]). Among many
features, one ability of SeCReT is that a TA can define a static access control
list (ACL), listing out all CAs in a system which it wants to allow to communi-
cate with itself. It is not a far-fetched assumption that, for maximizing security,
a TA should keep this ACL as small as possible and restricted to CA(s) which
it, to some degree, trusts.

Achieving communication privacy. A straightforward solution to pro-
tect communication channels is symmetric encryption. Moreover, to reliably
achieve source authentication, signing the encrypted messages is also desirable.
Although the Gatekeeper TA is able to achieve the second goal, there is still
one question: is the signing key safe with the CA? As CA(s) do not belong to a
TA’s root-of-trust, it is possible for a compromised REE kernel to simply extract
the encryption/signing key from the CA(s) and compromise the communication
channel. To this end, SeCReT [7] (or alternatively its sibling [8]), proposes a
solution. Instead of letting a CA handle its keys, SeCReT handles them for
the CA. SeCReT monitors accesses to the CA’s memory page where the keys
are stored, and blocks illegitimate processes from reading that memory page.
For every context switch, SeCReT performs register level verification (to pre-
vent control-flow manipulations) and memory flush operations to prevent any
residue of the keys from being leaked to an adversary. Furthermore, SeCReT
itself resides as a kernel module in both worlds. We assume that attacks on
SeCReT itself are outside the scope of this work.

1.1.2 Security in dimension 2○

While the previous dimension secured the communication channel, here we dis-
cuss secure partitioning of resources- an easily achievable goal through virtu-
alization. However, ARM TrustZone provides no inherent support for virtual-
ization. Hence, we consider third-party extensions. Hua et. al. [9] assumes an
attacker targeting the virtualization hypervisor. They develop defences against
a compromised hypervisor breaking TAs’ isolation (referred to as guest TEE s)
through manipulating the boot sequence, CPU states, and secure memory/pe-
ripherals. Liu et. al. [10] is another such virtualization defence targeting secure
peripherals.
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1.2 Goals
In this paper, we ask the following question: given the defences in these two
dimensions, is it possible to break secure isolation on an implementation of
ARM TrustZone? The entire communication is encrypted, and all defences we
mentioned so far are in place. Our goal is to find a way for an adversary to access
a TA in an execution context where it shouldn’t. Hereafter, we call the target
TA as victim TA. To put into perspective how such an attempt is impossible so
far, we note the following points:

1. The adversary cannot deploy a CA which directly communicates with the
victim TA, since SeCReT maintains an access control list of CAs allowed
to access the victim TA. Since this list’s owner is the victim TA itself, we
assume it does not intentionally expose its own service to anyone other
than the innocent CA.

2. Because the TAs are signed by device manufactures and the signing keys
are off-device, an adversary cannot load a modified TA in the system.

3. The adversary cannot access resources belonging to the victim TA because
of the advanced virtualization defences in place.

4. The adversary cannot spy on the victim TA’s communication since it is
encrypted. Moreover, no man-in-the-middle attack can be mounted since
source authentication occurs through the Gatekeeper TA.

5. The adversary cannot retrieve the encryption/signing keys from the in-
nocent CA since key management is done by SeCReT. Since attacks on
SeCReT itself are outside the scope of this work, we assume complete
integrity of SeCReT ’s functioning.

To motivate this goal in more concrete terms, we assume a TA running a
MLaaS (machine learning as a service) server and show an end-to-end attack
in Sec. 7.4. In the context of our work, we assume that this MLaaS TA has
a corresponding innocent CA which is responsible for receiving requests from
end-users and get the MLaaS TA to process them. Under these assumptions,
this paper chalks out an end-to-end attack wherein an adversary can hijack the
incoming encrypted and signed communication to the MLaaS TA, decrypt it,
change it, re-encrypt it, re-sign it, and fool the MLaaS TA into believing that the
communication was untampered. This leads to an adversary using the services
of a MLaaS TA without the latter having any knowledge of the compromise.

Generality of the MLaaS example. Although we speak of a MLaaS TA
as our target, our attack vector is in no way specific to it. Our attacks are ap-
plicable on any TA; nevertheless we choose MLaaS as a demonstration example
since it is a pay-per-use service and typically has privacy concerns accompanying
it [11–13]. Moreover, quite some recent interest has risen in adapting MLaaS
in an IoT environment [14]. MLaaS is a perfect example because of its critical
security-centric nature, the need to prevent unauthorized access to it, and the
economic loss accumulated should MLaaS start servicing unauthorized requests.
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1.3 Comparison with prior works

In this subsection, we summarize prior works and motivate our choice of the
platform, the hardware, and the specific methodology we undertake in this work.

1.3.1 Related works

Fault injection attacks refer to an umbrella of techniques designed for one pur-
pose: to influence the operational conditions of the victim device to introduce
unexpected execution paths in a program. Due to this faulty intermediate exe-
cution state, an adversary is able to do something creative: steal cryptographic
keys, bypass verification checks, and so on. Fault injection attacks have evolved
into several different subcategories: voltage glitches (manipulating the power
supply of the victim device), clock glitches(manipulating the clock input to the
victim device), temperature manipulations, and shooting electromagnetic/opti-
cal pulses onto the system.

The body of research into fault attacks and their consequences is large.
To keep this section focused, we only consider works pertaining to a threat
model wherein the adversary has physical access to a device. There have been
works [15–17] which assume a remote adversary manipulating the dynamic
voltage-frequency scaling (DVFS) interfaces of the victim device to mount fault
injections. However, as explained in Sec. 1.3.2, our target does not expose DVFS
interfaces thereby rendering these attack vectors useless. Similarly, as discussed
in Sec. 2, since secure-world receives no interrupts from the normal world, at-
tacks like [18] do not work either. Similarly, we do not consider works using
laser fault injections [19,20] because of 1○ higher acquisition and assembly cost
for the setup, and 2○ more time is required to find faults than electromagnetic
fault injections.

Even assuming physical access to the victim device, the large body of works
on the topic is too large. Therefore, we only consider works with some degree of
implications for Trusted Execution Environments (ARM TrustZone, Intel Soft-
ware Guard Extensions, AMD’s Secure Processor etc). Flynn et. al. [21] deploy
an electromagnetic fault injection technique to fault an integer pointer and read
more data than they are allowed, thereby leaking secrets. Nashimoto et. al. [22]
used a clock glitch to bypass RISC-V’s physical memory protection, with direct
implications for trusted execution environments. Chen et. al. [23] introduce
a voltage glitching through faults on the bus between the CPU and the volt-
age regulator on the motherboard. The attack targets Intel’s Software Guard
Extensions (SGX) enclaves: Intel’s counterpart of ARM TrustZone. Moreover,
Buhren et. al. [24] use voltage glitches to load malicious firmware that decrypts
virtualized memory and fake attestations.

1.3.2 Motivations for attack methodology

In this section, we pinpoint gaps in the attack vectors proposed by prior lit-
erature and how none of them are practical on the platform (both hardware

5



and software) we are targeting. As we mention in Sec. 2 and Sec. 7, our choice
of ARM TrustZone implementation is OP-TEE and our hardware platform is
Raspberry Pi 3 model B (because of their increasing popularity as the SoCs of
the IoT hemisphere [4, 5]).

We first note that remote faulting is not possible in our work’s context.
For remote fault injections, an adversary needs an exposed dynamic voltage-
frequency scaling (DVFS) interface. There are two ways to do this on our
target: 1○ through Linux’s scaling governors [25], and 2○ through config.txt

that a Raspberry Pi initializes from during boot time [26]. Since 1○ no longer
allows software-based overclocking post similar attacks [16] and 2○ is not ed-
itable from OP-TEE’s stripped down Linux kernel in the normal world, remote
fault injections like [15,16] are not possible in our target.

We do, however, consider adversaries with physical access to the device. We
borrow two critical objectives for such an adversary from [21]:

1. Attack without physical modifications to the device, preventing future
detection of the attack. Therefore, decapsulation is not within scope of
our work.

2. Attack in a reasonable time-frame of 0.5 – 2 hour window [21]. The rea-
sonable time-frame is considered as the duration in which the attack can
be mounted, before the device owner notices the device being missing and
revokes credentials.

We note, however, that none of the aforementioned works can be directly
translated to our setting. For works like [21, 27–29], the problem is their con-
sideration of the victim device being far simpler than a System-on-Chip (SoC)
like Raspberry Pi, housing an application grade processor running a production
level operating system (which requires radically different fault techniques [30]).
Bukasa et. al. [28] does consider a similar verification bypass as we do in Sec. 4;
however, we believe the high success rate is due to faulting one bit value on a
non SoC device. Similarly, works like [22, 31–33] do not apply to our setting
because of Raspberry Pi 3’s lack of an external clock/voltage interface.

In addition to running on low-end devices like FGPAs and deploying external
voltage/clock glitches, works like [22] assume the ability of an attacker to intro-
duce code-based changes allows a trigger signalling the start of an execution of
interest where the fault must be injected. Although an acceptable fault model
in academic settings, we don’t agree with its practical implications. From an
adversarial point of view, the victim device is running an already compiled code.
To be able to introduce a code-based trigger, an adversary has to decompile the
running binaries (this step is easier if the victim codebase is open-source), intro-
duce a code-based trigger, recompile the codebase building all dynamic libraries
(if any), and rerun everything. After this, the fault injection starts. However,
the complexity of this entire attack makes its practicality questionable. In this
work, we therefore explore less invasive triggering mechanisms: triggers that
indicate start of an execution of interest without needing code-based triggers.
We note that while [23] also requires software based triggers for glitching, the
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authors mention that this triggering from the target system is not a strict re-
quirement, rather a matter of convenience.

Although explained in detail later in Sec. 4.2, we briefly mention our depar-
ture from established approaches. We also use a trigger to begin fault injection.
But unlike previous works where changes to the target system were required
to generate this trigger, we rather rely on the open-source nature of OP-TEE
and techniques of side-channel power trace acquisitions to generate triggers not
requiring any modifications to victim’s software. This approach is one instan-
tiation of a more generic technique: using the behaviour of the target system
itself as a trigger. For example, Buhren et. al. [24] uses the size of bus traffic as
a trigger for voltage glitches. Van et. al. [34] uses pattern matching on normal
device power signal to trigger fault injections.

Portability of the attack. Note that although we choose OP-TEE as our
attack target, our attack is still generic. The attack succeeds not due to any
shortcomings of OP-TEE, but due to 1○ lack of metallic shields on Raspberry
Pi 3 processor allowing fault injections, and 2○ loopholes in GlobalPlatform
(GP) API specification for Trusted Execution Environments leading to attacks
discussed in Sec 5.2. Therefore, any other implementation of ARM TrustZone
based off GP API specifications and running on an unshielded processor is
vulnerable to similar attack vectors.

Paper Organization. The paper is organized as follows. In Sec. 2, we
introduce OP-TEE: our target ARM TrustZone implementation. Then we in-
troduce a three stepped end-to-end attack in Sec. 3. We cover the first phase
of the attack in Sec. 4, the second phase in Sec. 5, and finally the last phase
in Sec. 6. We provide a detailed implementation discussion in Sec. 7, wherein
we also provide an end-to-end attack on a MLaaS TA. Finally, we conclude the
paper.

2 OP-TEE implementation

We focus on OP-TEE’s implementation of ARM TrustZone [35]. It is one of the
most popular open-source implementations of ARM TrustZone with major in-
dustrial players involved in its design and development (otherwise known as the
Trusted Firmware project) and moderate to large scale production systems like
Apertis [36] and iWave systems [37] mentioning their use-cases with OP-TEE
integrations. It is a TrustZone implementation for Cortex-A cores with design
goals - isolation, small memory footprint, and portability. All architectural de-
sign decisions conform to GlobalPlatform’s (GP) specifications for embedded
applications on secure hardware. The REE is modelled by the GlobalPlatform
Client API specifications [38], while the TEE is governed by the GP Internal
Core API specification [39].

Intuition for the isolation. ARMv8 adopts a similar convention of priv-
ilege rings as Linux. As referred in Fig. 1, the REE and TEE are divided into
two layers for granular control: Exception layers (EL) 0 and 1, which provide
granular control over the actions of the REE and TEE. EL0 usually houses the
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userspace applications while EL1 houses the kernel. On the REE side, Linux is
used as the operating system; while on the TEE side, an OP-TEE OS is used
as the operating system. Because of no relevance to the paper, we omit the
shared cache region between TEE EL0 and REE EL0 (which all cache-based
attacks on ARM TrustZone use). Exception Layer 2 houses the secure monitor
call (SMC) handler allowing cross-world communication through software inter-
rupts triggering context switches. OP-TEE also has a collection of interrupts
named supervisor calls (SVC) that allow the transfer of control from EL0 to
EL1 in the same world. Briefly, apart from the shared memory and these inter-
rupts, there is no contact between the REE and the TEE. This design implies
that even if the REE has been compromised, TEE is still secure.

Intuition for the world switching. OP-TEE ensures the SMC interrupt
is non-maskable and controlled by EL2. On an SMC interrupt, EL2 changes
the ownership of the processor unless the current world is done executing or
EL2 receives a non-maskable interrupt from the idle world. Within EL1 in both
worlds, normal scheduling policies apply. Additionally, the ARM Generic Inter-
rupt Controller (GIC) can also signal either world. Without loss of generality,
let us assume the GIC signals REE. If REE is in possession of the processor,
it branches to the known interrupt service routine (ISR). If TEE is running, it
first relinquishes control of the processor to the REE through an SMC interrupt,
and then the REE jumps to the known ISR to handle GIC’s signal.

3 Three pronged attack model
In Sec. 1.2, we introduced a goal where an adversary aims to use services of
a private victim TA even in the presence of several defence mechanisms (c.f.
Sec. 1.1). In this work, we demonstrate a three-pronged attack by undermining
the isolation guarantees provided by both software (OP-TEE + third-party ex-
tensions) and hardware (ARM TrustZone). From the two dimensions of security
features discussion in Sec 1.1, we need not consider dimension 2○ since it solely
focuses on isolation through virtualization, preventing unauthorized manipula-
tion of CPU state, secure memory, and secure peripherals. Our attack succeeds
without taking these into consideration. We launch the attack in three stages:

1. Installing a malicious TA. For a specific device, all TAs are signed and
loaded at the time of device manufacturing. The private key for signing
of TAs is never loaded onto the device. Hence, bypassing the signature
verification is the only possible way to load a self-signed TA onto the victim
system. We utilize specifically targeted electromagnetic fault injections to
load self-signed TAs onto the system.

2. Replacing the Gatekeeper TA through UUID confusion. We take
advantage of the way OP-TEE decides which TA receives communication
from the normal world. When a CA requests communication from the
secure world, it initializes a session with the secure world and passes the
Universally Unique Identifier or UUID of the TA with whom it wishes to
communicate. The secure world loads the TA with this UUID. However,
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Figure 1: OP-TEE Architecture. SVCH and SMCI denote Supervisor Call (SVC) Han-
dler and Secure Monitor Call (SMC) Interface respectively.

through our empirical observations, we realized that there is no restric-
tion on two different TAs sharing the same UUID. Therefore, an adversary
deploys a TA whose identifier (called UUID) matches that of the Gate-
keeper TA already present in the system. Under certain circumstances
(c.f. Sec. 5.2), control flow meant for the Gatekeeper TA reaches a mali-
cious TA belonging to the adversary. Thereby, the adversary is basically
able to hijack communication between the two worlds.

3. Breaking encryption/authentication through SIGSEGV: Even af-
ter achieving a Man-in-the-middle attack through UUID confusion, the
adversary does not achieve its actual goal, since we assumed the commu-
nication is encrypted. Moreover, due to presence of SeCReT (c.f. Sec. 1.1),
the encryption/signing keys are safely managed and are not trivially leaked
through known side-channel attacks. This is because the innocent CA does
not have access to these keys except for a short duration, after which all
memory belonging to the keys is flushed by SeCReT. To counter this, we
introduce faults that send carefully timed SIGSEGV signals. In our ex-
periments, we have been able to leak the entire signing/encryption key
through a single fault.

With these three attack vectors in place, an adversary is able to sit between
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the victim TA and the innocent CA (c.f. Fig 3). With the help of leaked
encryption/signing keys, the adversary decrypts messages meant for victim TA,
edits them, re-encrypts them, resigns them, and then sends them to victim TA.
The signature verification done by victim TA will succeed and the victim services
the requests. Thereby, an adversary is able to gain access to an otherwise private
victim TA.

4 Attack 1: Installing malicious TAs

OP-TEE follows an offline signing and online verification process. The under-
lying assumption is that the root-of-trust lies with the manufacturer itself. The
manufacturer signs each Trusted Application with its private key [40], stitches
the signature with the symbol-stripped TA binary, and loads the binary onto
the system along with the public key for signature verification. Listing 1 depicts
this verification process. TEE ERROR SECURITY is a special error code returned
by OP-TEE in case signature verification fails.

1 #de f i n e TEE SUCCESS 0x00000000
2 #de f i n e TEE ERROR SECURITY 0xFFFF000F
3
4 TEE Result v e r i f y s i g n a t u r e ( char ∗ ta b inary , u i n t 8 t ∗ s i gna tu r e ){
5 i f ( /∗ s i gna tu r e i s va l i d ∗/ )
6 return TEE SUCCESS ;
7 return TEE ERROR SECURITY;
8 }
9

10 // load a TA re f e r enc ed by a CA, through i t s UUID
11 void load TA ( . . . ) {
12 // some code here
13 TEE Result r e s = v e r i f y s i g n a t u r e ( . . . )
14 i f ( r e s != TEE SUCCESS)
15 // abort execut ion
16 // some more code here
17 }

Listing 1: OP-TEE TA signature verification process

4.1 Bypassing verification: register-cleaning attack

Since the signature keys used to sign the TAs are not present on-device, forging
of signatures through signing key leakage is not possible. Therefore, the only
possible way to load a self-signed TA is to attempt a bypass of this verification
step.

Observation. From listing 1 (and from reading OP-TEE’s source code),
we observed that while several error states (like security errors, out-of-memory
errors etc) were given a 32-bit value, TEE SUCCESS was given a value 0x0. This
is not uncommon: almost all Linux based function calls conventionally use a 0
to denote success, and other integers denote several erroneous operations.

We exploit this convention. Listing 2 gives the aarch64 disassembly of Listing
1. The point of interest is one mov instruction which loads the return value of
verify signature into res, which in turn resides in a register. We attack
this operation by injecting a powerful electromagnetic (EM) pulse train at the
appropriate point in the execution, leading to pollution of values of res. If the
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EM injection is precise enough temporally and spatially, the value of res can
be completely cleaned (i.e. res could be forced as 0x0).

1 . text . v e r i f y s i g n a t u r e :
2 // some code here
3 mov w0 , <return code>
4 r e t
5
6 . t ext . load TA :
7 // some code here
8 // s e t t i n g up parameters
9 bl <v e r i f y s ignature>

10 cbnz w0 , <e r ro r out>
11 // some more code here

Listing 2: Sample disassembly of OP-TEE TA signature verification process. A
mov instruction moves the actual return code into the register w0, which then
goes through a cbnz or a ”compare and branch on non-zero” instruction to
decide whether to error out or not. Through a powerful enough EM injection on
these instructions, w0 can be cleared out to 0x0, thereby bypassing the otherwise
jump that cbnz would have taken.

4.2 Non-invasive triggering mechanism

In Sec. 4.1, we implicitly assumed that we have temporal precision over the
appropriate point in the execution wherein the value of res is being updated.
This is not entirely true. As we discussed in detail in Sec 1.3.2, several works
assume a code-based change to trigger the fault injections. For usual code-based
triggers, just before the security critical operation of interest begins, a signal is
generated to an attack controlled device, which in turn starts injecting faults.
Concretely, in the case of Raspberry Pi 3 running Raspbian OS, one probable
way to create such a code-based trigger is given in Listing 3. Just before the
operation of interest starts, the attacker induced code sends a square pulse over
GPIO pin 7. The adversary would capture this pulse through an external signal
generator, which will then start generating a train of pulses. This train of pulses
shall be used by fault injection probes to inject faults temporally localised to
the security critical operation.

1 #de f i n e TARGET GPIO PIN 7
2 void v ic im code ( . . . ) {
3 d i g i t a lWr i t e (TARGET GPIO PIN, HIGH) ;
4 // some delay to l e t the output s t a b i l i z e
5 d i g i t a lWr i t e (TARGET GPIO PIN, LOW) ;
6 // some secur i ty −c r i t i c a l operat ion
7 }

Listing 3: Code-based trigger mechanism for Raspbian based attack targets

However, there are two problems with this approach:

• Generic problem. In the context of our work, we consider code-based
triggers as invasive triggering mechanisms. Reason being that from an
adversarial point of view, an adversary has to replace the process binaries
running on the target system with its own instrumented binaries. This is
invasion in every sense of the word in most practical settings.

• OP-TEE specific problem. OP-TEE’s normal world is a stripped down
Linux kernel exposing a BusyBox interface to the adversary. From our
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empirical observations, we found that OP-TEE’s normal world Linux does
not expose a GPIO interface which an adversary could use.

Putting both these problems together implies that a lesser non-invasive trig-
gering mechanism is required to temporally localise faults. Therefore, we use
analysis of power traces as a triggering mechanism (c.f. Fig. 8). Power trace
acquisition allows an adversary to monitor the power consumption by the pro-
cess throughout the course of execution. Historically, it has been established
that some operations take more power than others, leading to a bias in acquired
power traces. Through this bias, adversaries have been able to break crypto-
graphic primitives [41,42].

Observation. Multiplications are computation heavy operations, requir-
ing higher power consumption than other operations. And multiplications are
heavily used in the signature verification listed in Listing 3.

To motivate the use of multiplications as triggering mechanisms, we note
ideas in literature on two fronts: 1○ the power consumption during multiplica-
tions vs other generic operations [43], and 2○ the heavy use of multiplications
in OP-TEE’s RSA signature verification process [44,45]. From the combination
of 1○ and 2○, along with 3○ the fact that a multiplication-heavy signature ver-
ification happens just before our point of interest (c.f. Listing 1) and 4○ the
fact that OP-TEE codebase is open-source, we have a non-invasive triggering
mechanism to denote when our signal generators should begin sending pulses
to inject because we know in advance the approximate time when signature
verification starts. Experimental setup is discussed in Sec. 7.1.

5 Attack 2: UUID confusion

In Sec. 4, we dealt with the problem of loading a self-signed TA into the secure
world. However, just loading a TA into the system does not do much damage.
This is because of several defences in place preventing a TA launching an attack
on another TA (c.f. Sec 1.1). Through the attack summarized in Sec 4, we just
have a rogue self-signed TA into the system. In this section, we deal with the
question on how to make use of the loaded self-signed TA to hijack communi-
cation meant for other TAs. We describe the second level of exploit that we
introduced in Sec. 3 to replace the Gatekeeper TA.

5.1 Gatekeeper architecture

We introduced the Gatekeeper TA concept in Sec 1.1.1 and motivated its use
because of the OP-TEE team themselves designing it [6]. We now introduce the
Gatekeeper ’s goals [6]:

• Password authentication
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Figure 2: Schematic of the Gatekeeper TA architecture. Note that the commu-
nication flow has been depicted, for brevity, from innocent CA to the victim TA
(a MLaaS TA in our example in Sec. 7.4). The reverse directional communica-
tion is straightforward to infer.

• Creation of attestations to be sent to the Keymaster (c.f. Fig 2). The
Keymaster TA is responsible for binding all incoming connections to a
hardware root-of-trust.

• Leveraging hardware-backed secret key

We give a high level overview of the Gatekeeper TA architecture in Fig 2.
The innocent CA sends some authentication information, which is verified and
attested by the Gatekeeper TA, which in turn is sent to the Keymaster TA which
binds the attestation to a hardware-backed root-of-trust. Once this is done, the
Gatekeeper TA allows the innocent CA to initiate communication with the vic-
tim TA. However, we have a crucial observation that will be central to replacing
the Gatekeeper TA

Observation. The Gatekeeper TA resides in TEE Userspace Exception
Level 0, which is the same privilege level as of the self-signed TA loaded by the
adversary (c.f. Sec 4).
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5.2 Replacing the Gatekeeper TA

In this section, we present a novel UUID confusion exploit and motivate reasons
for its existence. The UUID confusion exploit allows a TA to effectively spy on
the communication intended for another TA. When hardware-based isolation
between normal world and secure world is developed, the designers need a way
to allow a CA to communicate with TAs. OP-TEE does this through unique
TA identifiers called Universally Unique Identifier (UUID). UUIDs are 128-bit
numbers that uniquely identify TAs and are very hard to predict in advance.
Moreover, OP-TEE plays no role in UUID assignment to TAs (UUID generation
is responsibility of the TA developer) as well as TA UUIDs are considered not
sensitive information; something that can be publicly available to CAs.

On an orthogonal note, OP-TEE also has the concept of persistent and
non-persistent TAs. A persistent TA maintains its state even when no CA has
an active session going on. Non-persistent TAs spawn only when a CA initiates
a session, and close down when the CA closes the session. Most TAs acting
as servers choose to run as persistent TAs: always waiting for new incoming
connections to work upon. We note that the Gatekeeper TA, since it serves
authentication services to end-users, will also be running as a persistent TA.

In our investigation, we made empirical observations about the interplay of
persistence and UUID. OP-TEE makes two design decisions in its implementa-
tion: 1○ OP-TEE does not prevent two TAs from having the same UUID, and
2○ OP-TEE prefers opening sessions with non-persistent TAs than it does with
persistent TAs. To elaborate on 2○, if we have two TAs: persistent TA-x and a
non-persistent TA-y with the same UUID z and a CA initiates communication
with UUID z, OP-TEE will prefer opening a session with TA-y.

We show this exploit schematically in Fig. 3. The innocent CA wishes to
get the services of a victim TA. It initiates a session with the secure world. The
Gatekeeper TA receives the authentication data and the encrypted message from
the CA, attests it, and then relays the same to the Keymaster TA. Once the
Keymaster is satified, the Gatekeeper TA relays the original encrypted message
to the victim TA. The victim TA performs operations and returns back the
results.

However, should a malicious non-persistent TA deployed by an adversary
activate UUID confusion, the communication meant for the Gatekeeper TA is
now redirected to the malicious TA. This hijack is denoted by red communication
paths in Fig. 3. Once an adversarial controlled TA has replaced the Gatekeeper
TA, it does the following upon receipt of a connection request from innocent
CA:

• Stops all communications to the Keymaster TA. Reason being that the
malicious TA cannot attest to anything, lacking the resources Gatekeeper
TA had.

• Facilitates normal communication between the innocent CA and the victim
TA.
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Figure 3: Schematic of combination of UUID confusion based man-in-the-middle
attack. Bidirectional green lines denote the actual communication path that
should have been followed. The bidirectional red lines denote the actual path
followed after a non-persistent malicious TA (marked in red) is inserted whose
UUID is same as that of the persistent TA (marked in green).

Stopping communication with the Keymaster TA is not an issue in the
present context. The Gatekeeper TA was earlier relying on the Keymaster to
establish a hardware root-of-trust. Now that an adversary has replaced the
Gatekeeper TA with a malicious TA, the adversary is no longer concerned with
a hardware root-of-trust of all inbound communication. It simply needed to
mount a man-in-the-middle attack and get access to the communication meant
for the victim TA, which it is successful in doing through UUID confusion.

5.3 Defences defeated by UUID confusion

Among the several defence mechanisms and security features discussed in Sec 1.1,
we now note the ones successfully defeated by the UUID confusion exploit.

Breaking source authentication. As mentioned in Sec. 1.1 and Sec. 5.1,
the Gatekeeper TA is responsible to authenticate all CAs. Once authenticated,
a CA can access the TA of its choice. The victim TA was relying on this
gatekeeper to ensure only authenticated CAs can access its service. However,
through UUID confusion and the fact that the Gatekeeper TA resides in the
TEE userspace (c.f. Sec. 5.1), we note that a malicious TA is able to replace
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the Gatekeeper TA and hijack all checks related to source authentication. Since
this TA is malicious, it simply allows all CAs to communicate with the victim
as if they were correctly authenticated and does not communicate with the
Keymaster TA to establish a hardware root-of-trust.

Breaking access control. In Sec. 1.1, we noted that defence mechanisms
like SeCReT allow keeping an access control list (ACL) wherein every TA can
note a list of CAs allowed to access that TAs. We also noted that attacks on
SeCReT itself are outside scope, implying we do not assume any compromise of
the ACL itself. In this backdrop, UUID confusion comes to our aid. Through
UUID confusion, an adversary is able to hijack the Gatekeeper TA, performing
a man-in-the-middle attack (c.f. Fig. 3). The adversary has now a direct com-
munication channel with victim TA. Since this direct communication is solely
on the secure world side (i.e. between two TAs), SeCReT ’s ACL is helpless in
preventing this, because it patrols the normal world only.

6 Attack 3: Breaking encryption/authentication
through SIGSEGV

From Sec. 4, we have been able to install a malicious self-signed TA into the
secure world. From Sec. 5, we have been able to use that loaded TA to mount
a man-in-the-middle attack onto the communication meant for the victim TA.
However, as we noted earlier, all such communication is encrypted by symmetric
keys of which the innocent CA (c.f. Fig. 3) and the victim TA are the two
owners. Moreover, in Sec. 1.1, we also described how SeCReT ensures that the
secret keys are not leaked from the CA side to a compromised normal world.
SeCReT allows a CA to access the secret keys only for the required duration
of time, during which it blocks all reads/writes to the memory page holding
the key. After encryption/signing is done, SeCReT flushes the cache to prevent
leakage from any residue memory. Between an innocent CA and a victim TA,
the sequence of operations follows these steps:

• The victim TA receives encrypted communication from the innocent CA.

• The victim TA verifies signature to ensure innocent CA is the actual source
of the message.

• The victim TA decrypts the message, operates on it, encrypts and signs
the output, and sends it back.

In this section, we break this encryption and source-authentication. We do
it from the CA side since it is easier to target. We are assuming a symmetric
encryption setting implying the TA side keys are automatically leaked if the CA
is compromised. We begin by giving an introduction to Linux coredumps, what
they contain, how they are generated, and what it means to have coredumps
in Trusted Execution Environments. We then elaborate on ways to extract en-
cryption/signing keys of a CA, through coredumps, both for a remote adversary
and for a physical adversary.
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6.1 Linux coredumps

Linux coredumps are essential utilities that allow access to the image of a process
at the time of termination. Among many other triggers, the SIGSEGV signal
generates a coredump. Once a coredump is generated, it (along with the binary
that received the SIGSEGV signal) can be run through a debugger like GDB or
LLD to trace back execution to the point where SIGSEGV was generated. Here,
an adversary has access to the entire memory image of the process. Generally,
system administrators prevent the system core from dumping by setting a zero
limit to ulimit.

6.2 Coredumps in TEEs

As mentioned, a sysadmin can prevent a process from dumping the core by
putting a zero limit to the ulimit on the system. Moreover, changing the
ulimit is beyond the privileges offered to a non-root user. However, the threat
model of Trusted Execution Environments (TEEs) assumes security even in a
complete breakdown of trust on the normal world side- the untrusted normal
world OS threat model normally considered in case of TEEs [46, 47]. We note
the interplay of this assumption and the presence of coredumps as a dangerous
combination since normal world applications have, to some extent, data which
is directly related to the secure world (since a secure world cannot operate in
isolation without a normal world). In the next two subsections, we elaborate
how this flawed assumption leads to leakage of encryption/signing key that
breaks encryption and source authentication.

6.3 Remote adversary: SIGSEGV through kill

We start by assuming a remote attack from an adversary and how such an
adversary succeeds in leaking encryption/signing key even in the presence of
SeCReT and other defences. SeCReT and other defences offer sound key man-
agement services. However, for a short duration of time, the defences lend the
encryption/signing key to the normal world innocent CA (c.f. Fig. 3) which
performs encryption/signing. During this process, the defences guard against
unauthorized read accesses to the memory page holding the key (schematically
depicted in Fig. 4). At some point in its execution, innocent CA (c.f. Fig. 3)
requests for the keys held by SeCReT, which in turns provides the key. After
the innocent CA is done, it surrenders the key, wherein caches are flushed and
the key is removed from innocent CA’s local storage.

However, the CA is vulnerable in the duration where it holds the key. Should
an adversary succeed in forcing a coredump after the key transfer has finished
and before the key surrender starts, then the generated coredump would reflect a
process image where the key would be with the CA. Therefore, to the adversary,
the encryption/signing key would be accessible through analysis of the coredump
file.

Assuming a remote attack from an adversary, at the time when the inno-
cent CA is performing the encryption/signing operation, the adversary sends a
SIGSEGV through kill -11 <innocent CA PID>. As already noted in Sec. 6.2,
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Figure 4: Innocent CA’s interaction with SeCReT to perform encryption/sign-
ing. A carefully timed SIGSEGV leaks the keys while they are in innocent CA’s
memory.
a kernel configured with coredumps cannot prevent dumping cores in the threat
model considered for Trusted Execution Environments. Therefore, innocent
CA’s core is dumped and accessed by the adversary. Since the core was dumped
at a time when the encryption/signing keys were with the innocent CA, the keys
are present in the coredump and extracted by the adversary.

6.4 Physical adversary: SIGSEGV through EM injections

We now detail the same process of leaking encryption/signing keys with elec-
tromagnetic injections. SIGSEGV signals arise when memory access violations
happen. In programming languages like C, pointer variables are the prime tar-
gets of forcing memory access violations.

Observation. Breaking something is far easier than breaking something in
a particular way. An adversary does not require the precise fault injections of
Sec. 4.1 for this phase. They just have to break something.

An adversary simply has to inject long and powerful enough electromagnetic
pulses onto the memory chip embedded into the Raspberry Pi 3 board. When
the innocent CA does a memory operation, the EM injection is successful in
polluting values of the pointers while execution of STR/LDR instructions. More
often than not, we empirically observed SIGSEGV signals being raised and cores
being dumped. We emphasize this point further in Listing 4. After the point
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where keys are gathered from SeCReT, a powerful enough fault injection for
a long duration of time can corrupt a memory access operation. We assume
that such encryption.signing operations do not complete their entire execution
without needing any memory accesses. An adversary is required to corrupt any
one of these memory accesses after keys from SeCReT are gathered to dump
the core and retrieve both the encryption and the signing keys.

1 void encrypt message ( char ∗ encrypted bu f f e r , char ∗ buf f e r , char ∗ key ){
2 /∗ encrypt ion o f messages meant f o r v ict im TA∗/
3 }
4
5 void s ign message ( char ∗ s i gn bu f f e r , char ∗ encrypted bu f f e r , char ∗ key ){
6 /∗ s i gn ing o f the encrypted messages ∗/
7 }
8
9 void encrypt and s ign ( ) {

10 /∗ gather keys from SeCReT∗/
11 char ∗ encrypt ion key = getEncryptionKey ( ) ;
12 char ∗ s i gn ing key = getSigningKey ( ) ;
13 /∗−−−−−−−− FAULT WINDOW −−−−−−−−−−−−−∗/
14 encrypt message ( /∗ enc rypt ed bu f f e r ∗/ , /∗ bu f f e r ∗/ , encrypt ion key ) ;
15 s i gn ing key ( /∗ s i g n bu f f e r ∗/ , /∗ enc rypt ed bu f f e r ∗/ , s i gn ing key ) ;
16 /∗−−−−−−−− FAULT WINDOW −−−−−−−−−−−−−∗/
17 /∗ surrender keys ∗/
18 }

Listing 4: Encryption and signing of messages on the innocent CA side.

6.5 Defences defeated by SIGSEGV faults

In Sec. 1.1, we introduced several security factors and elaborated the third-party
extensions responsible for securing those factors. In Sec. 5.3, we successfully
demonstrated breaking source authentication and bypassing SeCReT ’s access
control lists. However, by then, although we had a successful man-in-the-middle
attack and a direct communication channel with the victim TA, it was not of
much use since the communication channel was still encrypted.

Breaking communication privacy. In the current section, however, we
demonstrated how careful timing of SIGSEGV signals and flawed assumptions
on coredumps in Trusted Execution Environments leak encryption/signing keys
even in the presence of defences like SeCReT.

7 Experimental details

In this section, we give experimental details of all three attack vectors. Our test
setup is depicted in Fig. 5. The victim device is a Raspberry Pi 3 Model B.
The adversarial device is a Raspberry Pi 4, which is connected to a Keysight
33500B signal generator responsible for triggering the entire fault injection pro-
cess. When the Raspberry Pi 4 produces a digital HIGH on one of the adversarial
controlled GPIO pins, the Keysight 33500B signal generator forwards the signal
to a Keysight 81160A pulse train generator. The Keysight 81160A pulse train
generator generates 15 pulses of frequency 200 MHz, pulse width 2 nanoseconds,
and amplitude -8.13 dbm. These 15 pulses are received by the signal amplifier
and amplified to pulses with frequency 400 MHz (as a comparison, the lowest
operational frequency of Raspberry Pi 3 Model B is 600 MHz). These ampli-
fied pulses are received by Rigol NFP-3 P3 EM (electromagnetic) probe and
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Table 1: OP-TEE monorepo state at the time of the attack. HEAD represents the
commit ID of the topmost commit in a particular sub-repository.

Sub-repository HEAD of the commit tree HEAD’s timestamp

buildroot [49] e6e12337f1874a5a53b42badf3d7fdd258d86a38 Dec 5 20:59:16 2021
edk2 [50] b24306f15daa2ff8510b06702114724b33895d3c Jan 26 13:12:21 2022
linux [51] b9a16995c467cc18cc26716d566c512fbac11069 Jun 30 21:48:49 2022

mbedtls [52] e483a77c85e1f9c1dd2eb1c5a8f552d2617fe400 Mar 12 16:55:26 2021
optee benchmark [53] 875be7f1959f19ed601ef37501f1cf0bfbee9da4 May 30 20:34:57 2020

optee client [54] f7ed8e3d3955e0b7a7d3ff77ab2abcfd8fb1cdb9 Apr 18 09:53:32 2022
optee os [55] 837adc0a4c5dc462bfcc690618b812d838534fa5 Jun 28 16:13:07 2022
optee test [56] da5282a011b40621a2cf7a296c11a35c833ed91b Apr 7 11:24:08 2022

trusted-firmware-a [57] a1f02f4f3daae7e21ee58b4c93ec3e46b8f28d15 Nov 23 14:14:26 2021
u-boot [58] b46dd116ce03e235f2a7d4843c6278e1da44b5e1 Apr 5 11:03:29 2021

Figure 5: The fault testbed developed to mount the attacks mentioned in this
paper. The victim device is mounted upon a XYZ table allowing careful po-
sitioning of the electromagnetic (EM) probe. Note that the EM probe is po-
sitioned to inject EM pulses from the backside of the device: thereby faulting
both the Broadcom processor situated on the frontside as well as the memory
chip located on the backside. A power side-channel analysis probe is mounted
on the Broadcom processor on the frondside to gather power traces. All signals
are recorded on a mixed signal oscilloscope.
injected onto the system. The OP-TEE codebase was compiled with the default
optimization flag [48]. Finally, table 1 gives the state of the OP-TEE monorepo
at the time of the attack.
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7.1 Attack 1: Installing TAs

To generate a TA-like binary, the adversary creates a normal C based-program
based off the GlobalPlatform’s Internal Core API specification [39]. This binary
is named <uuid>.ta where <uuid> denotes the publicly known UUID of the
Gatekeeper TA (c.f. Sec. 7.2 for more details of actual choice of the UUID).
The adversary- having root access in Ring 3 on the normal world Linux as per
considered threat model- loads this binary <uuid>.ta in lib/optee armtz.
Upon being invoked by a CA, <uuid>.ta is loaded and checked for verification,
wherein we bypass the check completely by cleaning the register holding the
return value.

7.1.1 Searching the fault parameter space

From the testbed shown in Fig. 5, there are several parameters to be tweaked.
Searching through the entire parameter space is an exponential problem, and
we require heuristics to converge upon a range of parameters most likely to give
faults of our interest. There is also another problem: our empirical observations
suggest that introducing incorrect faults in OP-TEE TA loading driver causes
immediate reboots. This happens because poorly localised faults cause memory
corruption.

To circumvent this and to find fault parameters, we decided to search for
optimal parameters on a dummy program in the normal world Linux (c.f. List-
ing 5). From analyzing the disassembly of the signature verification process
presented in listing 2, we know that a certain mov instruction updates value of a
variable, which is later used in a cbnz instruction to abort execution if needed.
Since this is a profiling phase undertaken by an adversary to find optimal fault
parameters, we can rely on code-based triggers. We use three triggers and two
delays to precisely isolate the actual instruction to be faulted. Refer to the
oscilloscope output in Fig. 6. The reason for adding three triggers in Listing 5
was to distinctly observe when three separate events are taking place: 1○ actual
fault injection trigger through a GPIO pin, 2○ mov instruction execution, and
3○ beginning of verification based off the value updated in 2○. Similarly, the
reason for using two delays (especially a longer second delay) was to understand
if the injected fault is actually being isolated in the region of interest (i.e. mov
instruction execution) or is it percolating into the verification step too.

1 #de f i n e GPIO PIN 7
2 #de f i n e TEE SUCCESS 0x00000000
3
4 void s ea r ch f au l t pa r amet e r spa c e ( ) {
5 u in t32 t r e s ; // the sample va r i ab l e to f a u l t
6 t r i g g e r (GPIO PIN) ; // t r i g g e r Keysight 33500B s i g n a l generator
7
8 f o r ( i n t i = 0 ; i < 20 ; i++)
9 f o r ( i n t j = 0 ; j < 20 ; j++) ; // programmable delay

10
11 t r i g g e r (GPIO PIN) ; // s i g n a l beginning o f ”mov” operat ion
12
13 asm v o l a t i l e ( ”mov %0, #4294901775”
14 : ”=r ” ( r e s ) ) ; // load 0xFFFF000F into ” r e s ”
15
16 f o r ( i n t i = 0 ; i < 20 ; i++)
17 f o r ( i n t j = 0 ; j < 100 ; j++) ; // a l i t t l e l onger programmable delay
18
19 t r i g g e r (GPIO PIN) ; // s i g n a l beginning o f v e r i f i c a t i o n
20 i f ( r e s == TEE SUCCESS)
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Figure 6: Oscilloscope output of a successful faulting of mov instruction, as depicted
in Fig 7. The topmost signal represents the input coming from Raspberry Pi 3. The
middle signal represents the output of the Keysight 33500B signal generator. The
lowermost signal represents the output of the Keysight 81160A pulse train generator.
Note that there are unavoidable latencies between these signals. It is therefore crucial
that in the victim device, to fault a mov instruction, the trigger should be raised
sometime before execution of mov instruction starts. The actual value of this delay
varies from device to device. Moreover, for a successful faulting, all three signals should
be aligned in time (as they are in the figure) exactly at the time of mov instruction
exection.

Table 2: Set of parameter values chosen for our setup.
Parameter Signal generator values Pulse train generator values

Frequency 10 KHz 200 MHz
Amplitude 2V -8.13 dBm

Offset 1V 0V
Pulse width 1 micro-second 2 nano-seconds
Cycle count 1 15

Trigger threshold 1V 1V
Trigger signal Rising edge Rising edge
Trigger delay 2.312 micro-seconds 0 micro-seconds

Device operational frequency 600 MHz 600 MHz

21 p r i n t f ( ” [SUCCESS] Reg i s t e r value corrupted to 0x%lx\n” , r e s ) ;
22 e l s e i f ( r e s != 0xFFFF000F)
23 p r i n t f ( ” [PARTIAL SUCCESS] Reg i s t e r value corrupted to 0x%lx\n” , r e s ) ;
24 e l s e
25 p r i n t f ( ” . ” ) ; // No cor rupt ion
26 }

Listing 5: A dummy program isolating the mov instruction used by OP-TEE
signature verification process to signal attempts of loading self-signed TAs.
From the parameter set tuned to this mov instruction from this program, we
fault the signature verification step on OP-TEE.

From repeating the experiments over 1,000,000 times, we observed higher
probabilities of faulting the mov instruction with the parameter set detailed
in table 2. While frequency, amplitude, and pulse width are self-explanatory
parameter sets, we shed some light on the others. Offset refers to the y-intercept
value of the signal (i.e. the amount by which a signal is shifted in the y-axis).
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Cycle count refers the number of square pulses to generate once the trigger is
received. Trigger threshold refers to the threshold above which the amplitude
of an input signal causes the signal generators to start operating. Trigger signal
means that the trigger must be checked on the rising edge of the input signal.
Trigger delay refers to the additional wait-time a signal generator waits from the
moment it is triggered to the moment when it actually starts producing output.
Trigger delay is essential to account for the unavoidable latencies mentioned
in Fig. 6. Through these parameters, the faults injected on the program in
Listing 5 were as Fig. 7 depicts.

7.1.2 Analysing power traces for triggering mechanism

In Sec 7.1.1, we assumed presence of code-based triggers. To circumvent this
requirement and develop completely non-invasive triggers, we look for specific
desirable patterns in the power trace outputs. Consider Fig. 8. OP-TEE’s
verification process involves a RSA signature verification. By observing power
trace output, we narrowed down the part of oscilloscope output where the power
traces match those of known RSA power traces [59]. Since the mov instruction
of our interest comes after RSA signature verification, this pattern is hereafter
used to trigger fault injections.

7.2 Attack 2: UUID confusion

The crux of our second attack vector was that since TA UUIDs are considered
non-sensitive information that is publicly available, a malicious TA can easily
reuse the UUID of another TA and OP-TEE does not complain about this reuse.
In listing 6, we present the boilerplate code that an innocent CA would use to
initiate communication with the secure world TA. In listing 7, we present the
TA FLAGS the malicious TA uses to force UUID confusion and transfer traffic to
itself. The UUID confusion attack is an instantaneous attack that is mounted
the moment two TAs with same UUIDs are loaded, until the time one of the
TAs is removed from the system. Of all the experiments we performed, a non-
persistent malicious TA, through UUID confusion, was always able to redirect
traffic meant for another persistent TA, as depicted in in Fig 9.

1 void authenticate with TEE ( char ∗ ca b ina ry d i g e s t , u i n t 8 t ∗ s i gna tu r e ){
2 TEEC UUID ta uuid = RANDOM CONST UUID; /∗ UUID of the TA to be invoked ∗/
3 TEEC Init ia l i zeContext (NULL, ta c tx ) ; /∗ I n i t i a l i z e context with TEE ∗/
4 TEEC OpenSession ( ta ctx , t a s e s s i on , ta uuid , TEEC LOGIN PUBLIC, . . . . ) ; /∗ Open

s e s s i o n with the TA ∗/
5 TEEC InvokeCommand( t a s e s s i on , /∗ command ∗/ , /∗ parameters ∗/ , /∗ e x i t code

r e f e r e n c e ∗/ ) ; /∗ invoke command to decrypt c i phe r t ex t passed in ’ parameters ’
∗/

6 TEEC CloseSession ( t a s e s s i o n ) ;
7 TEEC FinalizeContext ( t a c tx ) ;
8 }

Listing 6: Innocent CA accessing a TA with UUID RANDOM CONST UUID

1 // //////////////// Pe r s i s t en t innocent TA ///////////////////
2 #de f i n e TA FLAGS (TA FLAG SINGLE INSTANCE | TA FLAG INSTANCE KEEP ALIVE |

TA FLAG MULTI SESSION)
3 #de f i n e ta uu id RANDOM CONST UUID
4
5 void authent i ca t e ( const char ∗ diges t , const u i n t 8 t ∗ s i gna tu r e ){
6 /∗ i n i t i a l i z e context and accept s e s s i o n from CA ∗/
7 TEE AsymmetricVerifyDigest ( /∗ operat ion handle ∗/ , NULL, 0 , d iges t ,

d i g e s t l eng th , s ignature , s i gna tu r e l eng th ) ;
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Figure 7: The faults observed while attacking mov instruction in Listing 5 with the
parameter set detailed in Tab 2. Every dot (.) represents a correct expected execu-
tion. The SIGSEGV and SIGILL faults observed actually percolate to the instructions
following the mov instruction. However, as the screenshot depicts, we were able to ob-
serve one fault wherein mov loaded an incorrect value into res. And then we observed
many faults wherein mov cleared out res completely. This empirical observation is the
foundation of the countermeasure proposed in Sec 8.1.

8 /∗ teardown context and c l o s e s e s s i o n ∗/
9 }

10 // //////////////// Non−p e r s i s t e n t ma l i c i ous TA ///////////////////
11 #de f i n e TA FLAGS (TA FLAG EXEC DDR)
12 #de f i n e ta uu id RANDOM CONST UUID /∗ same UUID as innocent TA ∗/
13
14 void authent i ca t e ( const char ∗ diges t , const u i n t 8 t ∗ s i gna tu r e ){
15 /∗ i n i t i a l i z e context and accept s e s s i o n from CA ∗/
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Figure 8: The zoomed-in oscilloscope output during OP-TEE’s verification of TAs.

16 TEE AsymmetricVerifyDigest ( /∗ operat ion handle ∗/ , NULL, 0 , d iges t ,
d i g e s t l eng th , s ignature , s i gna tu r e l eng th ) ;

17 /∗ teardown context and c l o s e s e s s i o n ∗/
18 }

Listing 7: Two TAs with same UUID RANDOM CONST UUID

7.3 Attack 3: Breaking encryption/authentication

The core idea of our third attack vector was to force a premature memory
access violation in the innocent CA’s execution after it has received encryption
and signed keys from SeCReT. From the dumped core, an adversary is able to
recover both the encryption and the signing keys of an innocent CA. Here, we
give intuition on the recovery of keys from the dumped cores. The main problem
in such analysis is that OP-TEE’s normal world Linux kernel has no support
for debuggers. This means all analysis and key recovery is an offline process.
However, a core problem with offline analysis of coredumps is the absence of
symbols, making it harder. As such, dedicated reverse engineering is needed to
recover the keys from the coredumps. We followed the following process post a
coredump:

• Online Step. Since an adversary has root access in Ring 3 of normal
world Linux kernel, we were able to extract the coredump and the innocent
CA binary from OP-TEE to the adversarial controlled system.
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Figure 9: The flow of API calls denoting UUID confusion. TEEC OpenSession is the
TEE Client side API call responsible for opening a session with a TA. Based off the
UUID passed as parameter, a TA is loaded into secure memory, and all subsequent
operations occur with the loaded TA.

• Offline Step. We disassembled the innocent CA binary through aarch64-linux-gnu-objdump
obtained from publicly available ARM’s aarch64 toolchain.

• Offline Step. From analysing the coredump in aarch64-linux-gnu-gdb

again obtained from ARM’s aarch64 toolchain as well as from the disas-
sembly of innocent CA binary, a function call stack was constructed.

• Offline Step. Once a function call stack was successfully constructed, we
used aarch64-linux-gnu-gdb to dump the stack frames for each function.
If listing 4 is considered, we would be interested in the stack frame for
encrypt and sign() function, which would contain the encryption and
signing keys on the stack.
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Figure 10: End-to-end attack on a MLaaS TA. Steps of the attack: 1○ at-
tacker loads self-signed TA, 2○ while signature verification is happening for self-
signed, attacker introduces an EM fault to bypass verification, 3○ self-signed
TA is loaded, 4○- 5○ through SIGSEGV signals introduced by EM faults, encryp-
tion/signing keys are leaked, 6○- 7○ UUID confusion causes control transfer to
reach malicious TA instead of Gatekeeper TA, 8○ using leaked encryption/sign-
ing keys to send arbitrary, source-authenticated messages to MLaaS TA.
7.4 Accessing private MLaaS
In this section, we bring together all attack vectors to explain how an end-to-
end attack works on a possible use-case: MLaaS server running in the secure
world. MLaaS is a perfect demonstration example because of its critical security-
centric nature, the need to prevent unauthorized access to it, and the economic
loss accumulated should MLaaS start servicing unauthorized requests. We im-
plemented a convolutional neural network to classify MNIST dataset images.
For an input of size 28× 28, we applied two back-to-back convolutions that re-
spectively had 32 and 64 5×5 convolutional filters. Finally, there were two fully
connected layers with output size 1024 and 10 respectively. A zero-padding was
used during convolution operations, and max pooling was the chosen strategy
for pooling operations.

We had two security dimensions discussed in Sec. 1.1. The security dimen-
sion 2 (c.f. Sec. 1.1.2) is concerned with TEE virtualization in presence of many
TEEs. We do not discuss it since our attack vectors succeed without taking
them into consideration. Security dimension 1 (c.f. Sec. 1.1.1), however, aiming
to secure the entire communication flow had three facets: source authentication,
granular access control, and communication privacy. We break the first two with
our UUID confusion exploit. The last is broken by SIGSEGV based coredumps.
Both of these attacks are aided by installation of a self-signed malicious TA,
which then intercepts and decrypts all communication passing between the in-
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nocent CA and the MLaaS (c.f. Fig. 3). Once decrypted, the malicious TA can
modify the communication, re-encrypt it, and send the modified ciphertext to
MLaaS. Once a response is received from MLaaS, the malicious TA decrypts
it. Thereby, an adversary is able to get complete access to a private, pay-per-
use MLaaS service. Moreover, on a more general note, the adversary has been
successful in breaking the promised isolation between the normal world and
the secure world through our attack vectors. This entire end-to-end attack is
depicted in Fig. 10.

8 Countermeasures

Here, we propose some software-based countermeasures for the different attack
vectors proposed in the paper.

8.1 Attack 1: Installing TAs

This portion of the attack has been successful because of the interplay of two
independent factors: 1○ Raspberry Pi Model 3 B’s Broadcom processor being
exposed without a metallic shield, 2○ OP-TEE using 0x0 to denote success.
Therefore, we were able to inject powerful enough electromagnetic pulses to clear
out the register holding error code value to 0x0, thereby bypassing signature
verification. For this, we suggest two software countermeasures: 1○ port OP-
TEE to Raspberry Pi Model 4 which has a metallic shielding over its processor
making it harder for electromagnetic (EM) attacks to succeed, and/or 2○ change
return values denoting success from 0x0 to a non-zero value. From our empirical
observations (c.f. Fig. 7), EM injections find it easier to clear a register than to
set it to a particular value. In countermeasure 1○, however, there is a caveat.
Raspberry Pi 3 still remains a popular SoC for IoT networks [4, 5]. Therefore,
porting in-production software to Raspberry Pi 4 not only requires a non-trivial
engineering effort, but the ported software also needs to be validated in case the
porting creates newer attack surfaces.

8.2 Attack 2: UUID confusion

For UUID confusion, as we demonstrated, it is dangerous to let two TAs share
UUID. Therefore, TEE OS based software checks to ensure uniqueness will
prevent UUID confusion based attacks.

8.3 Attack 3: Breaking encryption/authentication

It is not sufficient to switch off coredumps in the case of Trusted Execution
Environments, since a root level adversary on Ring 3 of the normal world can
switch it back on. This lies within the attack model of Trusted Execution
Environments (TEEs) since TEEs claim security even with complete breakdown
of trust in the normal world. Therefore, we propose to not configure the normal
world kernel with coredumps at all. Therefore, the normal world kernel should
be configured with CONFIG COREDUMP option disabled.
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9 Conclusion
In this paper, we evaluated the claimed security of an implementation of ARM
TrustZone (OP-TEE) on a System-on-Chip (Raspberry Pi 3). We evaluated
ARM TrustZone based and third-party defence mechanisms protecting Trusted
Applications (TAs) running in the system. To this end, we gave a three stepped
end-to-end attack vector wherein we 1○ bypassed signature verification to in-
stall a self-signed TA through electromagnetic fault injections triggered by non-
invasive side-channel power traces, 2○ invoked UUID confusion to use the TA
installed in 1) to hijack communication meant for another TA, and 3○ injected
SIGSEGV signals through electromagnetic faults to leak encryption and signing
keys. With these attack vectors working together, we were able to break nor-
mal world and secure world isolation by performing man-in-the-middle attack
on encrypted/authenticated communication channels as well as decrypting the
communication. We also showed the end-to-end attack on a Machine-learning-
as-a-service (MLaaS) TA running on the secure world. Finally, we proposed
purely software based countermeasures to the attacks.
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