μΤ٧Μ

An Al Compiler and Framework for Arm Microcontrollers (and offload) Gustavo Romero Tom Gall

What is TVM?

An ML Framework with agnostic compilation stack, capable of targeting CPUs, GPUs, DSPs and NPUs

Key characteristics

- Apache Project
- Open Source Apache version 2
- <u>https://tvm.apache.org</u>
- Supports a range of hardware, microcontrollers to very large

Great, wasn't this about microcontrollers?

Inference on Microcontrollers - Issues

- Model Ingestion
- Cartesian product of models, frameworks and hardware
- Optimizations for microcontrollers must tune for a wider set of characteristics such as power, working set size, offload
- Quantization, pruning and distillation yet retaining accuracy is critical

- Model integration with application logic
- Integration with variety of RTOSes (everyone has a favorite) or RTOSless
- Support a range of hardware targets with different offload capabilities
- Deployment at scale

μΤνΜ

 μTVM is part of the TVM project with features tailored to deeply embedded environments

- Leverages TVM framework
- Minimal runtime
- RPC for interactive development
- Zephyr, (Mbed OS) or RTOSless(*)
- C, C++ / Python language bindings

μ TVM is a work in progress!

Development Workflow

TVM supports a wide range of models

µTVM ARM targets

- Zephyr RTOS
 - µTVM -> Zephyr application
 - Supported boards:
 - <u>ST NUCLEO-F746ZG board</u>, Cortex-m7
 - <u>ST STM32F746 Discovery board</u>, Cortex-m7 2
 - MPS2-AN521 (QEMU), Cortex-m33 (WIP) 3
 - MPS3-AN547 (emulated), Cortex-m55 (planned)
 - Issues:
 - Zephyr support (WIP)
 - No QEMU support

TVMC

- **tvmc** is the cli for TVM
- Two main use-cases: **a)** development workflow and **b)** integration with other projects (Makefile, etc)
- Currently only supports TVM targets (no microTVM targets)
- RFC proposed to add μ TVM targets [1],
- Relies on two other RFCs:
 - The Model Library Format [2]
 - The Project API [3]
- tvmc allows to split TVM/µTVM workflow in independent stages: compile, run, and autotune

- The workflow stages that generate artifacts (like compile) use the Model Library Format to store the artifacts
- The Project API will allow a better integration with various RTOSes
- For **tvmc** supporting the **µTVM targets**, additional stages specific to µTVM are proposed under new context 'micro':

\$ tvmc compile --target="c" ... (compile relay)

- \$ tvmc micro create-project --type zephyr ... --output=dir
- \$ tvmc micro build --input=dir --model compiled.tgz
- \$ tvmc micro flash --input=dir
- \$ tvmc micro run

µTVM Binary

Low-level SoC control

- Device Startup
- Peripheral Support
- Time Control Libraries
- Vendor Code
 - Libraries Example STM32F7Cube
- RTOS
 - Zephyr, MbedOS, FreeRTOS, Azure RTOS, etc..

 μTVM RPC and Runtime

- MISRA-C Runtime
- µTVM RPC Server
 - Enables interactive development
 - Driven by developers workstation
- Framing and Session

Compiled TVM operations

- Generated by TVM specific to user workload
- Maybe linked separately depending on RAM requirements

Example: running µTVM on ST discovery board

What: Interactive development example in Python (TVM repo, in <u>tutorials/micro/micro_tflite.py</u>)

- 1. Load model
 - a. TensorFlow Lite format
 - b. Prediction of sin(x)
- 2. Compile
- 3. Run uses Zephyr 2.4.0

Intel Host PC (Debian/Ubuntu)

- Native ARM hosted works too
- USB -> STM32F746 Discovery Board via STLink (OpenOCD, from Zephyr SDK)

tutorials/micro/micro_tflite.py:

Load model from .tflite | "https://people.linaro.org/~tom.gall/sine_model.tflite"

137 tflite_model_buf = open(model_path, "rb").read()

142 import tflite

144 tflite_model = tflite.Model.GetRootAsModel(tflite_model_buf, 0)

Parse Python model object to convert it into a relay module and weights

- 169 mod, params = relay.frontend.from_tflite(
- 170 tflite_model, shape_dict={input_tensor: input_shape}, dtype_dict={input_tensor: input_dtype}

Specify the TARGET. It will be used by TVM to generate C source using LLVM API internally

193 TARGET = tvm.target.target.micro("stm32f746xx") 194 BOARD = "stm32f746g_disco" # <mark>o</mark>r "nucleo_f746zg"

Given the TARGET, generate runtime graph (.json), C sources (**ops**), and model parameters per layer

202 graph, c_mod, c_params = relay.build(mod, target=TARGET, params=params)

Pick up a compiler using TARGET (and BOARD) to compile C sources into native code for the MCU

Plans / Code / Coordination

Community Project RFCs

- Standalone uTVM Roadmap https://discuss.tvm.apache.org/t/rfc-tvm-standalone-tvm-roadmap/6987
- uTVM RPC Server https://discuss.tvm.apache.org/t/rfc-tvm-tvm-rpc-server/7742
- M2 https://discuss.tvm.apache.org/t/tvm-microtvm-m2-roadmap/8821

Pull Requests

- Community : <u>https://github.com/apache/tvm/pulls</u>
- Linaro : <u>https://collaborate.linaro.org/display/AIML/AI+on+Microcontrollers</u>

Coordination - Contact tom.gall@linaro.org

- Linaro Al Project
- Weekly Sync meetings on Wednesday + Slack channel
- Product Level Spec Linaro Member companies set goals for µTVM to propel it towards a product ready state
- <u>https://collaborate.linaro.org/display/AIML/AI+on+Microcontrollers</u>

μTVM - How to get involved

Source - <u>https://github.com/apache/tvm</u>

Contributor Guide - <u>https://tvm.apache.org/docs/contribute/</u>

Forum - https://discuss.tvm.ai

Slack - tvmai.slack.com

Bugs / Issues - https://github.com/apache/tvm/issues

Thank you

Accelerating deployment in the Arm Ecosystem

